ترغب بنشر مسار تعليمي؟ اضغط هنا

An Interactive Gravitational-Wave Detector Model for Museums and Fairs

82   0   0.0 ( 0 )
 نشر من قبل Sam Cooper
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 2015 the first observation of gravitational waves marked a breakthrough in astrophysics, and in technological research and development. The discovery of a gravitational-wave signal from the collision of two black holes, a billion light-years away, received considerable interest from the media and public. We describe the development of a purpose-built exhibit explaining this new area of research to a general audience. The core element of the exhibit is a working Michelson interferometer: a scaled-down version of the key technology used in gravitational-wave detectors. The Michelson interferometer is integrated into a hands-on exhibit, which allows for user interaction and simulated gravitational-wave observations. An interactive display provides a self-guided explanation of gravitational-wave-related topics through video, animation, images and text. We detail the hardware and software used to create the exhibit and discuss two installation variants: an independent learning experience in a museum setting (the Thinktank Birmingham Science Museum), and a science-festival with the presence of expert guides (the 2017 Royal Society Summer Science Exhibition). We assess audience reception in these two settings, describe the improvements we have made given this information, and discuss future public-engagement projects resulting from this work. The exhibit is found to be effective in communicating the new and unfamiliar field of gravitational-wave research to general audiences. An accompanying website provides parts lists and information for others to build their own version of this exhibit.



قيم البحث

اقرأ أيضاً

By precisely monitoring the ticks of Natures most precise clocks (millisecond pulsars), scientists are trying to detect the ripples in spacetime (gravitational waves) produced by the inspirals of supermassive black holes in the centers of distant mer ging galaxies. Here we describe a relatively simple demonstration that uses two metronomes and a microphone to illustrate several techniques used by pulsar astronomers to search for gravitational waves. An adapted version of this demonstration could be used as an instructional laboratory investigation at the undergraduate level.
97 - T. Akutsu , M. Ando , K. Arai 2019
Modern ground-based gravitational wave (GW) detectors require a complex interferometer configuration with multiple coupled optical cavities. Since achieving the resonances of the arm cavities is the most challenging among the lock acquisition process es, the scheme called arm length stabilization (ALS) had been employed for lock acquisition of the arm cavities. We designed a new type of the ALS, which is compatible with the interferometers having long arms like the next generation GW detectors. The features of the new ALS are that the control configuration is simpler than those of previous ones and that it is not necessary to lay optical fibers for the ALS along the kilometer-long arms of the detector. Along with simulations of its noise performance, an experimental test of the new ALS was performed utilizing a single arm cavity of KAGRA. This paper presents the first results of the test where we demonstrated that lock acquisition of the arm cavity was achieved using the new ALS and residual noise was measured to be $8.2,mathrm{Hz}$ in units of frequency, which is smaller than the linewidth of the arm cavity and thus low enough to lock the full interferometer of KAGRA in a repeatable and reliable manner.
Quantum computational devices, currently under development, have the potential to accelerate data analysis techniques beyond the ability of any classical algorithm. We propose the application of a quantum algorithm for the detection of unknown signal s in noisy data. We apply Grovers algorithm to matched-filtering, a signal processing technique that compares data to a number of candidate signal templates. In comparison to the classical method, this provides a speed-up proportional to the square-root of the number of templates, which would make possible otherwise intractable searches. We demonstrate both a proof-of-principle quantum circuit implementation, and a simulation of the algorithms application to the detection of the first gravitational wave signal GW150914. We discuss the time complexity and space requirements of our algorithm as well as its implications for the currently computationally-limited searches for continuous gravitational waves.
We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated over a ~30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of < 10^(-18) / Hz^(1/2) in the 50 mHz - 10 Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline (< 100 m) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.
Gravitational waves from coalescing neutron stars encode information about nuclear matter at extreme densities, inaccessible by laboratory experiments. The late inspiral is influenced by the presence of tides, which depend on the neutron star equatio n of state. Neutron star mergers are expected to often produce rapidly-rotating remnant neutron stars that emit gravitational waves. These will provide clues to the extremely hot post-merger environment. This signature of nuclear matter in gravitational waves contains most information in the 2-4 kHz frequency band, which is outside of the most sensitive band of current detectors. We present the design concept and science case for a neutron star extreme matter observatory (NEMO): a gravitational-wave interferometer optimized to study nuclear physics with merging neutron stars. The concept uses high circulating laser power, quantum squeezing and a detector topology specifically designed to achieve the high-frequency sensitivity necessary to probe nuclear matter using gravitational waves. Above one kHz, the proposed strain sensitivity is comparable to full third-generation detectors at a fraction of the cost. Such sensitivity changes expected event rates for detection of post-merger remnants from approximately one per few decades with two A+ detectors to a few per year, and potentially allows for the first gravitational-wave observations of supernovae, isolated neutron stars, and other exotica.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا