ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatially multiplexed picosecond pulse-train generation in a 6-LP-mode fiber based on multiple four-wave-mixings

165   0   0.0 ( 0 )
 نشر من قبل Julien Fatome
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the generation of four spatially multiplexed picosecond 40-GHz pulse trains in a km-long 6-LP multimode optical fiber. The principle of operation is based on the parallel nonlinear compression of initial beat-signals into well separated pulse trains owing to intra-modal multiple four-wave mixings. A series of four 40-GHz dual-frequency beatings at different wavelengths are simultaneously injected into the LP01, LP11, LP02 and LP12 modes of a 1.8-km long graded-index few-mode fiber. The combined effects of Kerr nonlinearity and anomalous chromatic dispersion lead to the simultaneous generation of four spatially multiplexed frequency combs which correspond in the temporal domain to the compression of these beat-signals into picosecond pulses. The temporal profiles of the output pulse-trains demultiplexed from each spatial mode show that well-separated picosecond pulses with negligible pedestals are then generated.



قيم البحث

اقرأ أيضاً

We report on the experimental generation of spatially multiplexed picosecond 40-GHz pulse trains at telecommunication wavelengths by simultaneous intra-modal multiple four wave mixing and intermodal cross-phase modulation in km-long bi-modal and 6-LP -mode graded-index few-mode fibers. More precisely, an initial beat-signal injected into the fundamental mode is first nonlinearly compressed into well-separated pulses by means of an intra-modal multiple four-wave mixing process, while several group-velocity matched continuous-wave probe signals are injected into higher-order modes in such a way to develop similar pulsed profile thanks to an intermodal cross-phase modulation interaction. Specifically, by simultaneously exciting three higher-order modes (LP11, LP02 and LP31) of a 6-LP-mode fiber along group-velocity matched wavelengths with the fundamental mode, four spatially multiplexed 40-GHz picosecond pulse-trains are generated at selective wavelengths with negligible cross-talks between all the modes.
We report on the experimental observation of a simultaneous threefold wavelength and spatial conversion process at telecommunication wavelengths taking place in a 6-LP-mode graded-index few-mode fiber. The physical mechanism is based on parallel and phase-matched frequency-degenerated intermodal four-wave mixing (FD-IFWM) phenomena occurring between the fundamental mode and higher-order spatial modes. More precisely, a single high-power frequency-degenerated pump wave is simultaneously injected in the four spatial modes LP01, LP11, LP02 and LP31 of a 1.8-km long graded-index few-mode fiber together with three independent signals in the fundamental mode. By means of three parallel phase-matched FD-IFWM interactions, these initial signals are then simultaneously spatially and frequency converted from the fundamental mode to specific high-order modes. The influence of the differential modal group delay is also investigated and shows that the walk-off between the spatially multiplexed signals significantly limits the bandwidth of the conversion process for telecom applications.
We describe a fiber optical gyroscope based on the Sagnac effect realized on a multiplexed telecom fiber network. Our loop encloses an area of 20 km^2 and coexists with Internet data traffic. This Sagnac interferometer achieves a sensitivity of about 1e-8 (rad/s)/sqrt(Hz), thus approaching ring laser gyroscopes without using narrow-linewidth laser nor sophisticated optics. The proposed gyroscope is sensitive enough for seismic applications, opening new possibilities for this kind of optical fiber sensors
95 - Ya Liu , Xin Zhao , Guoqing Hu 2016
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with high ly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
We experimentally and theoretically investigate the process of seeded intermodal four-wave mixing in a graded index multimode fiber, pumped in the normal dispersion regime. By using a fiber with a 100 micron core diameter, we generate a parametric si deband in the C band (1530-1565 nm), hence allowing the use of an Erbium-based laser to seed the mixing process. To limit nonlinear coupling between the pump and the seed to low-order fiber modes, the waist diameter of the pump beam is properly adjusted. We observe that the superimposed seed stimulates the generation of new spectral sidebands. A detailed characterization of the spectral and spatial properties of these sidebands shows good agreement with theoretical predictions from the phase-matching conditions. Interestingly, we demonstrate that both the second and the fourth-order dispersions must be included in the phase matching conditions to get better agreement with experimental measurements. Furthermore, temporal measurements performed with a fast photodiode reveal the generation of multiple pulse structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا