ﻻ يوجد ملخص باللغة العربية
We revisit Matrix Balancing, a pre-conditioning task used ubiquitously for computing eigenvalues and matrix exponentials. Since 1960, Osbornes algorithm has been the practitioners algorithm of choice and is now implemented in most numerical software packages. However, its theoretical properties are not well understood. Here, we show that a simple random variant of Osbornes algorithm converges in near-linear time in the input sparsity. Specifically, it balances $Kinmathbb{R}_{geq 0}^{ntimes n}$ after $O(mepsilon^{-2}logkappa)$ arithmetic operations, where $m$ is the number of nonzeros in $K$, $epsilon$ is the $ell_1$ accuracy, and $kappa=sum_{ij}K_{ij}/(min_{ij:K_{ij} eq 0}K_{ij})$ measures the conditioning of $K$. Previous work had established near-linear runtimes either only for $ell_2$ accuracy (a weaker criterion which is less relevant for applications), or through an entirely different algorithm based on (currently) impractical Laplacian solvers. We further show that if the graph with adjacency matrix $K$ is moderately connected--e.g., if $K$ has at least one positive row/column pair--then Osbornes algorithm initially converges exponentially fast, yielding an improved runtime $O(mepsilon^{-1}logkappa)$. We also address numerical precision by showing that these runtime bounds still hold when using $O(log(nkappa/epsilon))$-bit numbers. Our results are established through an intuitive potential argument that leverages a convex optimization perspective of Osbornes algorithm, and relates the per-iteration progress to the current imbalance as measured in Hellinger distance. Unlike previous analyses, we critically exploit log-convexity of the potential. Our analysis extends to other variants of Osbornes algorithm: along the way, we establish significantly improved runtime bounds for cyclic, greedy, and parallelized variants.
We consider a system of nonlinear ordinary differential equations for the solution of linear programming (LP) problems that was first proposed in the mathematical biology literature as a model for the foraging behavior of acellular slime mold Physaru
Low rank matrix recovery problems, including matrix completion and matrix sensing, appear in a broad range of applications. In this work we present GNMR -- an extremely simple iterative algorithm for low rank matrix recovery, based on a Gauss-Newton
This paper studies an infinite horizon optimal control problem for discrete-time linear systems and quadratic criteria, both with random parameters which are independent and identically distributed with respect to time. A classical approach is to sol
We develop a novel variant of the classical Frank-Wolfe algorithm, which we call spectral Frank-Wolfe, for convex optimization over a spectrahedron. The spectral Frank-Wolfe algorithm has a novel ingredient: it computes a few eigenvectors of the grad
Classical iterative algorithms for linear system solving and regression are brittle to the condition number of the data matrix. Even a semi-random adversary, constrained to only give additional consistent information, can arbitrarily hinder the resul