ﻻ يوجد ملخص باللغة العربية
We experimentally investigate charge transport through the interface between a gold electrode and a black phosphorus single crystal. The experimental $dI/dV(V)$ curves are characterized by well developed zero-bias conductance peak and two strongly different branches. We find that two branches of asymmetric $dI/dV(V)$ curves correspond to different band gap limits, which is consistent with the theoretically predicted band gap reconstruction at the surface of black phosphorus under electric field. This conclusion is confirmed by experimental comparison with the symmetric curves for narrow-gap (WTe$_2$) and wide-gap (GaSe) metal-semiconductor structures. In addition, we demonstrate p-type dopants redistribution at high bias voltages of different sign, which opens a way to use the interface structures with black phosphorus in resistive memory applications.
Black phosphorous (BP) is a layered semiconductor with high carrier mobility, anisotropic optical response and wide bandgap tunability. In view of its application in optoelectronic devices, understanding transient photo-induced effects is crucial. He
The conducting quasi-two dimensional electron system (q2DES) formed at the interface between LaAlO3 and SrTiO3 band insulators is confronting the condensed matter physics community with new paradigms. While the mechanism for the formation of the q2DE
The possibility of hybridizing collective electronic motion with mid-infrared (mid-IR) light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene a
Nanoscale step structures have attracted recent interest owing to their importance in both fundamental and applied research, for example in adsorption, in catalysis, and in directing nanowire growth. Here, we used a template-stripping method to obtai
Recent experimental measurements of light absorption in few-layer black phosphorus (BP) reveal a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in f