ﻻ يوجد ملخص باللغة العربية
The goal of our work is to perform pixel label semantic segmentation on 3D biomedical volumetric data. Manual annotation is always difficult for a large bio-medical dataset. So, we consider two cases where one dataset is fully labeled and the other dataset is assumed to be fully unlabelled. We first perform Semantic Segmentation on the fully labeled isotropic biomedical source data (FIBSEM) and try to incorporate the the trained model for segmenting the target unlabelled dataset(SNEMI3D)which shares some similarities with the source dataset in the context of different types of cellular bodies and other cellular components. Although, the cellular components vary in size and shape. So in this paper, we have proposed a novel approach in the context of unsupervised domain adaptation while classifying each pixel of the target volumetric data into cell boundary and cell body. Also, we have proposed a novel approach to giving non-uniform weights to different pixels in the training images while performing the pixel-level semantic segmentation in the presence of the corresponding pixel-wise label map along with the training original images in the source domain. We have used the Entropy Map or a Distance Transform matrix retrieved from the given ground truth label map which has helped to overcome the class imbalance problem in the medical image data where the cell boundaries are extremely thin and hence, extremely prone to be misclassified as non-boundary.
Segmentation of 3D images is a fundamental problem in biomedical image analysis. Deep learning (DL) approaches have achieved state-of-the-art segmentation perfor- mance. To exploit the 3D contexts using neural networks, known DL segmentation methods,
With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagno- sis, and medical intervention. Since manual anno- tation su ers limited reproducibility, ardu
Unsupervised Domain Adaptation (UDA) is crucial to tackle the lack of annotations in a new domain. There are many multi-modal datasets, but most UDA approaches are uni-modal. In this work, we explore how to learn from multi-modality and propose cross
3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths an
Semantic segmentation is essentially important to biomedical image analysis. Many recent works mainly focus on integrating the Fully Convolutional Network (FCN) architecture with sophisticated convolution implementation and deep supervision. In this