ﻻ يوجد ملخص باللغة العربية
Many applications, especially in physics and other sciences, call for easily interpretable and robust machine learning techniques. We propose a fully gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation. We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data which arise in a challenging real-world material physics problem. The pruned models are optimized to provide compact and interpretab
We investigate the benefits of feature selection, nonlinear modelling and online learning when forecasting in financial time series. We consider the sequential and continual learning sub-genres of online learning. The experiments we conduct show that
We introduce and investigate matrix approximation by decomposition into a sum of radial basis function (RBF) components. An RBF component is a generalization of the outer product between a pair of vectors, where an RBF function replaces the scalar mu
Radial basis function (RBF) network is a third layered neural network that is widely used in function approximation and data classification. Here we propose a quantum model of the RBF network. Similar to the classical case, we still use the radial ba
Atomic-scale materials synthesis via layer deposition techniques present a unique opportunity to control material structures and yield systems that display unique functional properties that cannot be stabilized using traditional bulk synthetic routes
We present the remote stochastic gradient (RSG) method, which computes the gradients at configurable remote observation points, in order to improve the convergence rate and suppress gradient noise at the same time for different curvatures. RSG is fur