ﻻ يوجد ملخص باللغة العربية
The soliton existence in sub-atomic many-nucleon systems is discussed. In many nucleon dynamics represented by the nuclear time-dependent density functional formalism, much attention is paid to energy and mass dependence of the soliton existence. In conclusion, the existence of nuclear soliton is clarified if the temperature of nuclear system is from 10 to 30 MeV. With respect to the mass dependence $^{4}$He and $^{16}$O are suggested to be the candidates for the self-bound states exhibiting the property of nuclear soliton.
The time-dependent covariant density functional theory in 3D lattice space has been developed and applied to investigate the microscopic dynamics of the linear-chain cluster states for carbon isotopes in the reactions $^4$He$+^8$Be and $^4$He$+^{10}$
The three-dimensional tilted axis cranking covariant density functional theory (3D-TAC CDFT) is used to study the chiral modes in $^{135}$Nd. By modeling the motion of the nucleus in rotating mean field as the interplay between the single-particle mo
We present the basic concepts and recent developments in the time-dependent density functional theory (TDDFT) for describing nuclear dynamics at low energy. The symmetry breaking is inherent in nuclear energy density functionals (EDFs), which provide
Time-dependent covariant density functional theory with the successful density functional PCPK1 is developed in a three-dimensional coordinate space without any symmetry restrictions, and benchmark calculations for the 16O + 16O reaction are performe
Basic issues of the time-dependent density-functional theory are discussed, especially on the real-time calculation of the linear response functions. Some remarks on the derivation of the time-dependent Kohn-Sham equations and on the numerical methods are given.