ﻻ يوجد ملخص باللغة العربية
We propose a sigmoidal approximation for the value-at-risk (that we call SigVaR) and we use this approximation to tackle nonlinear programs (NLPs) with chance constraints. We prove that the approximation is conservative and that the level of conservatism can be made arbitrarily small for limiting parameter values. The SigVar approximation brings scalability benefits over exact mixed-integer reformulations because its sample average approximation can be cast as a standard NLP. We also establish explicit connections between SigVaR and other smooth sigmoidal approximations recently reported in the literature. We show that a key benefit of SigVaR over such approximations is that one can establish an explicit connection with the conditional value at risk (CVaR) approximation and exploit this connection to obtain initial guesses for the approximation parameters. We present small- and large-scale numerical studies to illustrate the developments.
We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to
We present a method to find the maximum magnitude of any supply-shortfall service that an aggregator of energy storage devices is able to sell to a grid operator. This is first demonstrated in deterministic settings, then applied to scenarios in whic
Aggregation of heating, ventilation, and air conditioning (HVAC) loads can provide reserves to absorb volatile renewable energy, especially solar photo-voltaic (PV) generation. However, the time-varying PV generation is not perfectly known when the s
In this paper, a sample-based procedure for obtaining simple and computable approximations of chance-constrained sets is proposed. The procedure allows to control the complexity of the approximating set, by defining families of simple-approximating s
We investigate constrained optimal control problems for linear stochastic dynamical systems evolving in discrete time. We consider minimization of an expected value cost over a finite horizon. Hard constraints are introduced first, and then reformula