ترغب بنشر مسار تعليمي؟ اضغط هنا

On-demand local modification of high-$T_text{c}$ superconductivity in few unit-cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$

91   0   0.0 ( 0 )
 نشر من قبل Sanat Ghosh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-temperature superconductors (HTS) are important for potential applications and for understanding the origin of strong correlations. Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (BSCCO), a van der Waals material, offers a platform to probe the physics down to a unit-cell. Guiding the flow of electrons by patterning 2DEGS and oxide heterostructures has brought new functionality and access to new science. Similarly, modifying superconductivity in HTS locally, on a small length scale, will be of immense interest for superconducting electronics. Here we report transport studies on few unit-cell thick BSCCO and modify its superconductivity locally by depositing metal on the surface. Deposition of chromium (Cr) on the surface over a selected area of BSCCO results in insulating behavior of the patterned region. Cr locally depletes oxygen in CuO$_2$ planes and disrupts the superconductivity in the layers below. Our technique of modifying superconductivity is suitable for making sub-micron superconducting wires and more complex superconducting electronic devices.



قيم البحث

اقرأ أيضاً

101 - Yu He , Su-Di Chen , Zi-Xiang Li 2020
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma gnetic evidence for persistent superconducting fluctuations in heavily hole-doped cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ ($T_c$ = 66~K) despite the high carrier density. With a sign-problem free quantum Monte Carlo calculation, we show how a partially flat band at ($pi$,0) can help enhance superconducting phase fluctuations. Finally, we discuss the implications of an anisotropic band structure on the phase-coherence-limited superconductivity in overdoped cuprates and other superconductors.
We present systematic measurements of the mechanical properties of few unit cell (UC) thick exfoliated crystals of a high-T$_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$. We determine the elastic properties of these crystals by deforma tion using an atomic force microscope (AFM) at room temperature. With the spatial measurements of local compliance and their detailed modeling, we independently determine the Youngs modulus of rigidity and the pre-stress. The Youngs modulus of rigidity is found to be in the range of 22 GPa to 30 GPa for flakes with thickness from 5 UC to 18 UC. The pre-stress spreads over the range of 5 MPa - 46 MPa, indicating a run-to-run variation during the exfoliation process. The determination of Youngs modulus of rigidity for thin flakes is further verified from recently reported buckling technique.
Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topo logical superconductivity is thin bismuth films on Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212). Here, we present angle-resolved and core-level photoemission spectroscopy studies of thin Bi films grown {it in-situ} on as-grown Bi2212 that show the absence of proximity effect. We find that the electron transfer from the film to the substrate and the resulting severe underdoping of Bi2212 at the interface is a likely origin for the absence of proximity effect. We also propose a possible way of preventing a total loss of proximity effect in this system. Our results offer a better and more universal understanding of the film/cuprate interface and resolve many issues related to the proximity effect.
In cuprate superconductors, the doping of carriers into the parent Mott insulator induces superconductivity and various other phases whose characteristic temperatures are typically plotted versus the doping level $p$. In most materials, $p$ cannot be determined from the chemical composition, but it is derived from the superconducting transition temperature, $T_mathrm{c}$, using the assumption that $T_mathrm{c}$ dependence on doping is universal. Here, we present angle-resolved photoemission studies of Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, cleaved and annealed in vacuum or in ozone to reduce or increase the doping from the initial value corresponding to $T_mathrm{c}=91$ K. We show that $p$ can be determined from the underlying Fermi surfaces and that $in-situ$ annealing allows mapping of a wide doping regime, covering the superconducting dome and the non-superconducting phase on the overdoped side. Our results show a surprisingly smooth dependence of the inferred Fermi surface with doping. In the highly overdoped regime, the superconducting gap approaches the value of $2Delta_0=(4pm1)k_mathrm{B}T_mathrm{c}$
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup erconducting temperatures. Yet, while solid evidences exist in several unconventional superconductors of ubiquitous critical fluctuations associated to a quantum critical point, in the cuprates they remain undetected until now. Here using symmetry-resolved electronic Raman scattering in the cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$, we report the observation of enhanced electronic nematic fluctuations near the endpoint of the pseudogap phase. While our data hint at the possible presence of an incipient nematic quantum critical point, the doping dependence of the nematic fluctuations deviates significantly from a canonical quantum critical scenario. The observed nematic instability rather appears to be tied to the presence of a van Hove singularity in the band structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا