ﻻ يوجد ملخص باللغة العربية
The ZnWO$_4$ is an anisotropic crystal scintillator; for its peculiar characteristics, it is a very promising detector to exploit the so-called directionality approach in the investigation of those Dark Matter (DM) candidates inducing nuclear recoils. Recently, in the framework of the ADAMO project, an R&D to develop high quality and ultra-radiopure ZnWO$_4$ crystal scintillators has been carried out. In the present paper the measurements to study the anisotropic response of a ZnWO$_4$ to $alpha$ particles and to nuclear recoils induced by neutron scattering are reported. Monochromatic neutrons have been produced by a neutron generator at ENEA-CASACCIA. The quenching factor values for nuclear recoils along different crystallographic axes have been determined for three different nuclear recoils energies. These results open the possibility to realize a pioneer experiment to investigate the above mentioned DM candidates by means of the directionality.
As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of $^{116}$CdWO$_4$ crystal scintillator by thorium was reduced by a f
Anisotropic scintillators can offer a unique possibility to exploit the so-called directionality approach in order to investigate the presence of those Dark Matter (DM) candidates inducing nuclear recoils. In fact, their use can overcome the difficul
Since long time, the compelling scientific goals of future high energy physics experiments were a driving factor in the development of advanced detector technologies. A true innovation in detector instrumentation concepts came in 1968, with the devel
Hybrid ECAL is a cost-conscious option of electromagnetic calorimeter (ECAL) for particle flow calorimetry to be used in a detector of International Linear Collider (ILC). It is a combination of silicon-tungsten ECAL, which realizes high granularity
The LUX-ZEPLIN (LZ) experiment will search for dark matter particle interactions with a detector containing a total of 10 tonnes of liquid xenon within a double-vessel cryostat. The large mass and proximity of the cryostat to the active detector volu