ﻻ يوجد ملخص باللغة العربية
We present an efficient clustering algorithm applicable to one-dimensional data such as e.g. a series of timestamps. Given an expected frequency $Delta T^{-1}$, we introduce an $mathcal{O}(N)$-efficient method of characterizing $N$ events represented by an ordered series of timestamps $t_1,t_2,dots,t_N$. In practice, the method proves useful to e.g. identify time intervals of missing data or to locate isolated events. Moreover, we define measures to quantify a series of events by varying $Delta T$ to e.g. determine the quality of an Internet of Things service.
Given a similarity graph between items, correlation clustering (CC) groups similar items together and dissimilar ones apart. One of the most popular CC algorithms is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and obta
In this paper, we consider the Byzantine reliable broadcast problem on authenticated and partially connected networks. The state-of-the-art method to solve this problem consists in combining two algorithms from the literature. Handling asynchrony and
Synthetic medical data which preserves privacy while maintaining utility can be used as an alternative to real medical data, which has privacy costs and resource constraints associated with it. At present, most models focus on generating cross-sectio
We propose an univesal scheme to design loop-free and super-stabilizing protocols for constructing spanning trees optimizing any tree metrics (not only those that are isomorphic to a shortest path tree). Our scheme combines a novel super-stabilizing
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo