ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Learning Meets Contract Theory: Energy-Efficient Framework for Electric Vehicle Networks

172   0   0.0 ( 0 )
 نشر من قبل Yuris Mulya Saputra
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specifically, we first introduce CS-based and CS clustering-based decentralized federated energy learning (DFEL) approaches which enable the CSs to train their own energy transactions locally to predict energy demands. In this way, each CS can exchange its learned model with other CSs to improve prediction accuracy without revealing actual datasets and reduce communication overhead among the CSs. Based on the energy demand prediction, we then design a multi-principal one-agent (MPOA) contract-based method. In particular, we formulate the CSs utility maximization as a non-collaborative energy contract problem in which each CS maximizes its utility under common constraints from the smart grid provider (SGP) and other CSs contracts. Then, we prove the existence of an equilibrium contract solution for all the CSs and develop an iterative algorithm at the SGP to find the equilibrium. Through simulation results using the dataset of CSs transactions in Dundee city, the United Kingdom between 2017 and 2018, we demonstrate that our proposed method can achieve the energy demand prediction accuracy improvement up to 24.63% and lessen communication overhead by 96.3% compared with other machine learning algorithms. Furthermore, our proposed method can outperform non-contract-based economic models by 35% and 36% in terms of the CSs utilities and social welfare of the network, respectively.



قيم البحث

اقرأ أيضاً

76 - Zhengrui Huang 2021
Considering the energy-efficient emergency response, subject to a given set of constraints on emergency communication networks (ECN), this article proposes a hybrid device-to-device (D2D) and device-to-vehicle (D2V) network for collecting and transmi tting emergency information. First, we establish the D2D network from the perspective of complex networks by jointly determining the optimal network partition (ONP) and the temporary data caching centers (TDCC), and thus emergency data can be forwarded and cached in TDCCs. Second, based on the distribution of TDCCs, the D2V network is established by unmanned aerial vehicles (UAV)-based waypoint and motion planning, which saves the time for wireless transmission and aerial moving. Finally, the amount of time for emergency response and the total energy consumption are simultaneously minimized by a multiobjective evolutionary algorithm based on decomposition (MOEA/D), subject to a given set of minimum signal-to-interference-plus-noise ratio (SINR), number of UAVs, transmit power, and energy constraints. Simulation results show that the proposed method significantly improves response efficiency and reasonably controls the energy, thus overcoming limitations of existing ECNs. Therefore, this network effectively solves the key problem in the rescue system and makes great contributions to post-disaster decision-making.
Due to the advanced capabilities of the Internet of Vehicles (IoV) components such as vehicles, Roadside Units (RSUs) and smart devices as well as the increasing amount of data generated, Federated Learning (FL) becomes a promising tool given that it enables privacy-preserving machine learning that can be implemented in the IoV. However, the performance of the FL suffers from the failure of communication links and missing nodes, especially when continuous exchanges of model parameters are required. Therefore, we propose the use of Unmanned Aerial Vehicles (UAVs) as wireless relays to facilitate the communications between the IoV components and the FL server and thus improving the accuracy of the FL. However, a single UAV may not have sufficient resources to provide services for all iterations of the FL process. In this paper, we present a joint auction-coalition formation framework to solve the allocation of UAV coalitions to groups of IoV components. Specifically, the coalition formation game is formulated to maximize the sum of individual profits of the UAVs. The joint auction-coalition formation algorithm is proposed to achieve a stable partition of UAV coalitions in which an auction scheme is applied to solve the allocation of UAV coalitions. The auction scheme is designed to take into account the preferences of IoV components over heterogeneous UAVs. The simulation results show that the grand coalition, where all UAVs join a single coalition, is not always stable due to the profit-maximizing behavior of the UAVs. In addition, we show that as the cooperation cost of the UAVs increases, the UAVs prefer to support the IoV components independently and not to form any coalition.
Sixth-Generation (6G)-based Internet of Everything applications (e.g. autonomous driving cars) have witnessed a remarkable interest. Autonomous driving cars using federated learning (FL) has the ability to enable different smart services. Although FL implements distributed machine learning model training without the requirement to move the data of devices to a centralized server, it its own implementation challenges such as robustness, centralized server security, communication resources constraints, and privacy leakage due to the capability of a malicious aggregation server to infer sensitive information of end-devices. To address the aforementioned limitations, a dispersed federated learning (DFL) framework for autonomous driving cars is proposed to offer robust, communication resource-efficient, and privacy-aware learning. A mixed-integer non-linear (MINLP) optimization problem is formulated to jointly minimize the loss in federated learning model accuracy due to packet errors and transmission latency. Due to the NP-hard and non-convex nature of the formulated MINLP problem, we propose the Block Successive Upper-bound Minimization (BSUM) based solution. Furthermore, the performance comparison of the proposed scheme with three baseline schemes has been carried out. Extensive numerical results are provided to show the validity of the proposed BSUM-based scheme.
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of SignSGD in which only the signs of the gradients are exchanged. Moreover, most of the existing works assume Channel State Information (CSI) available at both the mobile devices and the parameter server, and thus the mobile devices can adopt fixed transmission rates dictated by the channel capacity. In this work, only the parameter server side CSI is assumed, and channel capacity with outage is considered. In this case, an essential problem for the mobile devices is to select appropriate local processing and communication parameters (including the transmission rates) to achieve a desired balance between the overall learning performance and their energy consumption. Two optimization problems are formulated and solved, which optimize the learning performance given the energy consumption requirement, and vice versa. Furthermore, considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a stochastic sign-based algorithm is proposed. Extensive simulations are performed to demonstrate the effectiveness of the proposed methods.
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications. Traditional cloudbased Mac hine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا