ﻻ يوجد ملخص باللغة العربية
As machine learning (ML) has seen increasing adoption in safety-critical domains (e.g., autonomous vehicles), the reliability of ML systems has also grown in importance. While prior studies have proposed techniques to enable efficient error-resilience techniques (e.g., selective instruction duplication), a fundamental requirement for realizing these techniques is a detailed understanding of the applications resilience. In this work, we present TensorFI, a high-level fault injection (FI) framework for TensorFlow-based applications. TensorFI is able to inject both hardware and software faults in general TensorFlow programs. TensorFI is a configurable FI tool that is flexible, easy to use, and portable. It can be integrated into existing TensorFlow programs to assess their resilience for different fault types (e.g., faults in particular operators). We use TensorFI to evaluate the resilience of 12 ML programs, including DNNs used in the autonomous vehicle domain. Our tool is publicly available at https://github.com/DependableSystemsLab/TensorFI.
We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data. This framework offers high-level abstractions for the design and training of both discriminative
Error-bounded lossy compression is becoming more and more important to todays extreme-scale HPC applications because of the ever-increasing volume of data generated because it has been widely used in in-situ visualization, data stream intensity reduc
Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining.
Replica Exchange (RE) simulations have emerged as an important algorithmic tool for the molecular sciences. RE simulations involve the concurrent execution of independent simulations which infrequently interact and exchange information. The next set
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow