ترغب بنشر مسار تعليمي؟ اضغط هنا

TensorFI: A Flexible Fault Injection Framework for TensorFlow Applications

97   0   0.0 ( 0 )
 نشر من قبل Zitao Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As machine learning (ML) has seen increasing adoption in safety-critical domains (e.g., autonomous vehicles), the reliability of ML systems has also grown in importance. While prior studies have proposed techniques to enable efficient error-resilience techniques (e.g., selective instruction duplication), a fundamental requirement for realizing these techniques is a detailed understanding of the applications resilience. In this work, we present TensorFI, a high-level fault injection (FI) framework for TensorFlow-based applications. TensorFI is able to inject both hardware and software faults in general TensorFlow programs. TensorFI is a configurable FI tool that is flexible, easy to use, and portable. It can be integrated into existing TensorFlow programs to assess their resilience for different fault types (e.g., faults in particular operators). We use TensorFI to evaluate the resilience of 12 ML programs, including DNNs used in the autonomous vehicle domain. Our tool is publicly available at https://github.com/DependableSystemsLab/TensorFI.



قيم البحث

اقرأ أيضاً

We introduce TensorFlow Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data. This framework offers high-level abstractions for the design and training of both discriminative and generative quantum models under TensorFlow and supports high-performance quantum circuit simulators. We provide an overview of the software architecture and building blocks through several examples and review the theory of hybrid quantum-classical neural networks. We illustrate TFQ functionalities via several basic applications including supervised learning for quantum classification, quantum control, simulating noisy quantum circuits, and quantum approximate optimization. Moreover, we demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning. We hope this framework provides the necessary tools for the quantum computing and machine learning research communities to explore models of both natural and artificial quantum systems, and ultimately discover new quantum algorithms which could potentially yield a quantum advantage.
Error-bounded lossy compression is becoming more and more important to todays extreme-scale HPC applications because of the ever-increasing volume of data generated because it has been widely used in in-situ visualization, data stream intensity reduc tion, storage reduction, I/O performance improvement, checkpoint/restart acceleration, memory footprint reduction, etc. Although many works have optimized ratio, quality, and performance for different error-bounded lossy compressors, there is none of the existing works attempting to systematically understand the impact of lossy compression errors on HPC application due to error propagation. In this paper, we propose and develop a lossy compression fault injection tool, called LCFI. To the best of our knowledge, this is the first fault injection tool that helps both lossy compressor developers and users to systematically and comprehensively understand the impact of lossy compression errors on HPC programs. The contributions of this work are threefold: (1) We propose an efficient approach to inject lossy compression errors according to a statistical analysis of compression errors for different state-of-the-art compressors. (2) We build a fault injector which is highly applicable, customizable, easy-to-use in generating top-down comprehensive results, and demonstrate the use of LCFI. (3) We evaluate LCFI on four representative HPC benchmarks with different abstracted fault models and make several observations about error propagation and their impacts on program outputs.
Due to the increasing size of HPC machines, the fault presence is becoming an eventuality that applications must face. Natively, MPI provides no support for the execution past the detection of a fault, and this is becoming more and more constraining. With the introduction of ULFM (User Level Fault Mitigation library), it has been provided with a possible way to overtake a fault during the application execution at the cost of code modifications. ULFM is intrusive in the application and requires also a deep understanding of its recovery procedures. In this paper we propose Legio, a framework that lowers the complexity of introducing resiliency in an embarrassingly parallel MPI application. By hiding ULFM behind the MPI calls, the library is capable to expose resiliency features to the application in a transparent manner thus removing any integration effort. Upon fault, the failed nodes are discarded and the execution continues only with the non-failed ones. A hierarchical implementation of the solution has been also proposed to reduce the overhead of the repair process when scaling towards a large number of nodes. We evaluated our solutions on the Marconi100 cluster at CINECA, showing that the overhead introduced by the library is negligible and it does not limit the scalability properties of MPI. Moreover, we also integrated the solution in real-world applications to further prove its robustness by injecting faults.
Replica Exchange (RE) simulations have emerged as an important algorithmic tool for the molecular sciences. RE simulations involve the concurrent execution of independent simulations which infrequently interact and exchange information. The next set of simulation parameters are based upon the outcome of the exchanges. Typically RE functionality is integrated into the molecular simulation software package. A primary motivation of the tight integration of RE functionality with simulation codes has been performance. This is limiting at multiple levels. First, advances in the RE methodology are tied to the molecular simulation code. Consequently these advances remain confined to the molecular simulation code for which they were developed. Second, it is difficult to extend or experiment with novel RE algorithms, since expertise in the molecular simulation code is typically required. In this paper, we propose the RepEx framework which address these aforementioned shortcomings of existing approaches, while striking the balance between flexibility (any RE scheme) and scalability (tens of thousands of replicas) over a diverse range of platforms. RepEx is designed to use a pilot-job based runtime system and support diverse RE Patterns and Execution Modes. RE Patterns are concerned with synchronization mechanisms in RE simulation, and Execution Modes with spatial and temporal mapping of workload to the CPU cores. We discuss how the design and implementation yield the following primary contributions of the RepEx framework: (i) its ability to support different RE schemes independent of molecular simulation codes, (ii) provide the ability to execute different exchange schemes and replica counts independent of the specific availability of resources, (iii) provide a runtime system that has first-class support for task-level parallelism, and (iv) required scalability along multiple dimensions.
TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexibility to the application developer: whereas in previous parameter server designs the management of shared state is built into the system, TensorFlow enables developers to experiment with novel optimizations and training algorithms. TensorFlow supports a variety of applications, with particularly strong support for training and inference on deep neural networks. Several Google services use TensorFlow in production, we have released it as an open-source project, and it has become widely used for machine learning research. In this paper, we describe the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance that TensorFlow achieves for several real-world applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا