ترغب بنشر مسار تعليمي؟ اضغط هنا

An introduction to algebraic models for rational G-spectra

280   0   0.0 ( 0 )
 نشر من قبل David Barnes
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The project of Greenlees et al. on understanding rational G-spectra in terms of algebraic categories has had many successes, classifying rational G-spectra for finite groups, SO(2), O(2), SO(3), free and cofree G-spectra as well as rational toral G-spectra for arbitrary compact Lie groups. This paper provides an introduction to the subject in two parts. The first discusses rational G-Mackey functors, the action of the Burnside ring and change of group functors. It gives a complete proof of the well-known classification of rational Mackey functors for finite G. The second part discusses the methods and tools from equivariant stable homotopy theory needed to obtain algebraic models for rational G-spectra. It gives a summary of the key steps in the classification of rational G-spectrain terms of a symmetric monoidal algebraic category. Having these two parts in the same place allows one to clearly see the analogy between the algebraic and topological classifications.



قيم البحث

اقرأ أيضاً

139 - David Barnes , Danny Sugrue 2020
For G a profinite group, we construct an equivalence between rational G-Mackey functors and a certain full subcategory of $G$-sheaves over the space of closed subgroups of G called Weyl-G-sheaves. This subcategory consists of those sheaves whose stal k over a subgroup K is K-fixed. This extends the classification of rational G-Mackey functors for finite G of Th{e}venaz and Webb, and Greenlees and May to a new class of examples. Moreover, this equivalence is instrumental in the classification of rational G-spectra for profinite G, as given in the second authors thesis.
88 - Danny Sugrue 2019
In this thesis we will investigate rational G-spectra for a profinite group G. We will provide an algebraic model for this model category whose injective dimension can be calculated in terms of the Cantor-Bendixson rank of the space of closed subgrou ps of G, denoted SG. The algebraic model we consider is chain complexes of Weyl-G-sheaves of rational vector spaces over the spaces. The key step in proving that this is an algebraic model for G-spectra is in proving that the category of rational G-Mackey functors is equivalent to Weyl-G-sheaves. In addition to the fact that this sheaf description utilises the topology of G and the closed subgroups of G in a more explicit way than Mackey functors do, we can also calculate the injective dimension. In the final part of the thesis we will see that the injective dimension of the category of Weyl-G-sheaves can be calculated in terms of the Cantor-Bendixson rank of SG, hence giving the injective dimension of the category of Mackey functors via the earlier equivalence.
We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes.
188 - Satoshi Aoki 2016
In this paper, we introduce the fundamental notion of a Markov basis, which is one of the first connections between commutative algebra and statistics. The notion of a Markov basis is first introduced by Diaconis and Sturmfels (1998) for conditional testing problems on contingency tables by Markov chain Monte Carlo methods. In this method, we make use of a connected Markov chain over the given conditional sample space to estimate the P-values numerically for various conditional tests. A Markov basis plays an importance role in this arguments, because it guarantees the connectivity of the chain, which is needed for unbiasedness of the estimate, for arbitrary conditional sample space. As another important point, a Markov basis is characterized as generators of the well-specified toric ideals of polynomial rings. This connection between commutative algebra and statistics is the main result of Diaconis and Sturmfels (1998). After this first paper, a Markov basis is studied intensively by many researchers both in commutative algebra and statistics, which yields an attractive field called computational algebraic statistics. In this paper, we give a review of the Markov chain Monte Carlo methods for contingency tables and Markov bases, with some fundamental examples. We also give some computational examples by algebraic software Macaulay2 and statistical software R. Readers can also find theoretical details of the problems considered in this paper and various results on the structure and examples of Markov bases in Aoki, Hara and Takemura (2012).
378 - Greg Friedman 2021
This is an expository introduction to simplicial sets and simplicial homotopy theory with particular focus on relating the combinatorial aspects of the theory to their geometric/topological origins. It is intended to be accessible to students familia r with just the fundamentals of algebraic topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا