ﻻ يوجد ملخص باللغة العربية
We report an improved reversibility of magnetostriction and inverse magnetocaloric effect (MCE) for the magnetic shape-memory Heusler alloy Ni$_{1.8}$Mn$_{1.8}$In$_{0.4}$. We show that the magnetostriction and MCE crucially depends on the geometrical compatibility of the austenite and martensite phases. Detailed information on the compatibility of both phases has been obtained from the transformation matrix calculated from x-ray diffraction data. The uniqueness of the lattice parameters results in an improved reversibility of the magnetostriction and the MCE. In the thermal hysteresis region of the martensitic transformation, the maximum relative length change is 0.3% and the adiabatic temperature change $Delta T_{ad}approx -10$ K in pulsed magnetic fields. Our results reveal that the approach of geometric compatibility will allow one to design materials with reversible magnetostriction and reversible inverse MCE at a first-order magnetostructural phase transition in shape-memory Heusler alloys.
We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni$_{50}$Mn$_{34}$In$_{16}$ alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventiona
The origin of incommensurate structural modulation in Ni-Mn based Heusler type magnetic shape memory alloys (MSMAs) is still an unresolved issue inspite of intense focus on this due to its role in the magnetic field induced ultra-high strains. In the
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to
The large magnetocaloric effect (MCE) observed in Ni-Mn based shape-memory Heusler alloys put them forward to use in magnetic refrigeration technology. It is associated with a first-order magnetostructural (martensitic) phase transition. We conducted
We have studied the magnetocaloric effect (MCE) in the shape-memory Heusler alloy Ni$_{50}$Mn$_{35}$In$_{15}$ by direct measurements in pulsed magnetic fields up to 6 and 20 T. The results in 6 T are compared with data obtained from heat-capacity exp