ترغب بنشر مسار تعليمي؟ اضغط هنا

Demographic Bias: A Challenge for Fingervein Recognition Systems?

139   0   0.0 ( 0 )
 نشر من قبل Pawel Drozdowski
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, concerns regarding potential biases in the underlying algorithms of many automated systems (including biometrics) have been raised. In this context, a biased algorithm produces statistically different outcomes for different groups of individuals based on certain (often protected by anti-discrimination legislation) attributes such as sex and age. While several preliminary studies investigating this matter for facial recognition algorithms do exist, said topic has not yet been addressed for vascular biometric characteristics. Accordingly, in this paper, several popular types of recognition algorithms are benchmarked to ascertain the matter for fingervein recognition. The experimental evaluation suggests lack of bias for the tested algorithms, although future works with larger datasets are needed to validate and confirm those preliminary results.



قيم البحث

اقرأ أيضاً

Named Entity Recognition (NER) is often the first step towards automated Knowledge Base (KB) generation from raw text. In this work, we assess the bias in various Named Entity Recognition (NER) systems for English across different demographic groups with synthetically generated corpora. Our analysis reveals that models perform better at identifying names from specific demographic groups across two datasets. We also identify that debiased embeddings do not help in resolving this issue. Finally, we observe that character-based contextualized word representation models such as ELMo results in the least bias across demographics. Our work can shed light on potential biases in automated KB generation due to systematic exclusion of named entities belonging to certain demographics.
With the widespread use of biometric systems, the demographic bias problem raises more attention. Although many studies addressed bias issues in biometric verification, there are no works that analyze the bias in presentation attack detection (PAD) d ecisions. Hence, we investigate and analyze the demographic bias in iris PAD algorithms in this paper. To enable a clear discussion, we adapt the notions of differential performance and differential outcome to the PAD problem. We study the bias in iris PAD using three baselines (hand-crafted, transfer-learning, and training from scratch) using the NDCLD-2013 database. The experimental results point out that female users will be significantly less protected by the PAD, in comparison to males.
Systems incorporating biometric technologies have become ubiquitous in personal, commercial, and governmental identity management applications. Both cooperative (e.g. access control) and non-cooperative (e.g. surveillance and forensics) systems have benefited from biometrics. Such systems rely on the uniqueness of certain biological or behavioural characteristics of human beings, which enable for individuals to be reliably recognised using automated algorithms. Recently, however, there has been a wave of public and academic concerns regarding the existence of systemic bias in automated decision systems (including biometrics). Most prominently, face recognition algorithms have often been labelled as racist or biased by the media, non-governmental organisations, and researchers alike. The main contributions of this article are: (1) an overview of the topic of algorithmic bias in the context of biometrics, (2) a comprehensive survey of the existing literature on biometric bias estimation and mitigation, (3) a discussion of the pertinent technical and social matters, and (4) an outline of the remaining challenges and future work items, both from technological and social points of view.
Recently, different researchers have found that the gallery composition of a face database can induce performance differentials to facial identification systems in which a probe image is compared against up to all stored reference images to reach a b iometric decision. This negative effect is referred to as watchlist imbalance effect. In this work, we present a method to theoretically estimate said effect for a biometric identification system given its verification performance across demographic groups and the composition of the used gallery. Further, we report results for identification experiments on differently composed demographic subsets, i.e. females and males, of the public academic MORPH database using the open-source ArcFace face recognition system. It is shown that the database composition has a huge impact on performance differentials in biometric identification systems, even if performance differentials are less pronounced in the verification scenario. This study represents the first detailed analysis of the watchlist imbalance effect which is expected to be of high interest for future research in the field of facial recognition.
94 - Sixue Gong , Xiaoming Liu , 2019
We address the problem of bias in automated face recognition and demographic attribute estimation algorithms, where errors are lower on certain cohorts belonging to specific demographic groups. We present a novel de-biasing adversarial network (DebFa ce) that learns to extract disentangled feature representations for both unbiased face recognition and demographics estimation. The proposed network consists of one identity classifier and three demographic classifiers (for gender, age, and race) that are trained to distinguish identity and demographic attributes, respectively. Adversarial learning is adopted to minimize correlation among feature factors so as to abate bias influence from other factors. We also design a new scheme to combine demographics with identity features to strengthen robustness of face representation in different demographic groups. The experimental results show that our approach is able to reduce bias in face recognition as well as demographics estimation while achieving state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا