ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Correlation and Geometrical Frustration in Molecular Solids -- A Systematic ab initio Study of $beta^prime$-$X$[Pd(dmit)$_{2}$]$_{2}$

112   0   0.0 ( 0 )
 نشر من قبل Takahiro Misawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We systematically derive low-energy effective Hamiltonians for molecular solids $beta^prime$-$X$[Pd(dmit)$_{2}$]$_{2}$ ($X$ represents a cation) using ab initio density functional theory calculations and clarify how the cation controls the inter-dimer transfer integrals and the interaction parameters. The effective models are solved using the exact diagonalization method and the antiferromagnetic ordered moment is shown to be significantly suppressed around the spin-liquid candidate of $X$=EtMe$_{3}$Sb, which is reported in experiments. We also show that both the geometrical frustration and the off-site interactions play essential roles in the suppression of antiferromagnetic ordering. This systematic derivation and analysis of the low-energy effective Hamiltonians offer a firm basis to clarify the nature of the quantum spin liquid found in $beta^prime$-EtMe$_{3}$Sb[Pd(dmit)$_{2}$]$_{2}$.



قيم البحث

اقرأ أيضاً

The first part of this article centers on the fact that key features of the dynamical response of weakly-correlated materials (the alkalis, Al), have been found experimentally to differ qualitatively from simple-model behavior. In the absence of ab i nitio theory, the surprises embodied in the experimental data were imputed to effects of dynamical correlations. We summarize results of ab initio investigations of linear response, performed within time-dependent density-functional theory (TDDFT), in which the unexpected features of the observed spectra are shown to be due to band-structure effects. Contrary to conventional wisdom, the response cannot be understood universally, in terms of a simple scaling with the density, on going from metal to metal (e.g., through the alkali series) --even the shape of the dispersion curve for the plasmon energy is system-specific. The second part of this article starts out with the observation that a similar ab initio study of systems with more complex electronic structures would require the availability of a realistic approximation for the dynamical many-body kernel entering the density-response function in TDDFT. Thus, we outline a diagrammatic alternative, framed within the conserving-approximation method of Baym and Kadanoff. Using as a benchmark the band gap of Si obtained in the GW approximation, together with a diagrammatic (and conserving) solution of the ensuing Bethe-Salpeter equation, we discuss issues involving conservation laws, self-consistency, and sum rules. These conceptual issues are particularly important for the development of ab initio methods for the study of dynamical response and quasiparticle band structure of strongly-correlated materials. We argue that inclusion of short-range correlations absent in the GW approximation is a must, even in Si.
146 - Q. Q. Ge , H. C. Xu , X. P. Shen 2013
The electronic structure of a quantum spin liquid compound, EtMe3Sb[Pd(dmit)2]2, has been studied with angle-resolved photoemission spectroscopy, together with two other Pd(dmit)2 salts in the valence bond solid or antiferromagnetic state. We have re solved several bands that have negligible dispersions and fit well to the calculated energy levels of an isolated [Pd(dmit)2]2 dimer. EtMe3Sb[Pd(dmit)2]2 being a Mott insulator, its lower Hubbard band is identified, and there is a small gap of ~ 50 meV between this band and the chemical potential. Moreover, the spectral features exhibit polaronic behavior with anomalously broad linewidth. Compared with existing theories, our results suggest that strong electron-boson interactions, together with smaller hopping and on-site Coulomb interaction terms have to be considered for a realistic modeling of the organic quantum spin liquid systems like the Pd(dmit)2 salt.
We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of triangular-lattice organic compound EtMe$_3$Sb[Pd(dmit)$_2$]$_2$, which has long been considered as a gapless quantum spin liquid candidate. In specific heat measurements, a finite linear term is observed, consistent with the previous work [S. Yamashita $et$ $al.$, Nat. Commun. {bf 2}, 275 (2011)]. However, we do not observe a finite residual linear term in the thermal conductivity measurements, and the thermal conductivity does not change in a magnetic field of 6 Tesla. These results are in sharp contrast to previous thermal conductivity measurements on EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ [M. Yamashita $et$ $al.$ Science {bf 328}, 1246 (2010)], in which a huge residual linear term was observed and attributed to highly mobile gapless excitations, likely the spinons of a quantum spin liquid. In this context, the true ground state of EtMe$_3$Sb[Pd(dmit)$_2$]$_2$ has to be reconsidered.
Electronic properties of quasi-two-dimensional molecular conductors $X$[Pd(dmit)$_2$]$_2$ are studied theoretically. We construct an effective model based on the fragment molecular orbital scheme developed recently, which can describe the multi-orbit al degree of freedom in this system. The tight-binding parameters for a series of $beta$-type compounds with different cations $X$ are evaluated by fitting to first-principles band calculations. We find that the transfer integrals within the dimers of Pd(dmit)$_2$ molecules, along the intramolecular and intermolecular bonds including the diagonal ones, are the same order, leading to hybridization between different molecular orbitals. This results in charge disproportionation within each molecule, as seen in our previous ab initio study [T. Tsumuraya et al, J. Phys. Soc. Jpn. 82, 033709 (2013)], and also to a revised picture of an effective dimer model. Furthermore, we discuss broken-symmetry insulating states triggered by interaction effects, which show characteristic features owing to the multi-orbital nature. The on-site Coulomb interaction induces antiferromagnetic states with intramolecular antiparallel spin pattern, while electron-lattice couplings stabilize non-magnetic charge-lattice ordered states where two kinds of dimers with different charge occupation arrange periodically. These states showing different spatial patterns compete with each other as well as with the paramagnetic metallic state.
77 - S. Fujiyama , R. Kato 2017
Nuclear spin-lattice (1/T1) and spin-spin (1/T2) relaxation rates of the cation sites of a quantum spin-liquid candidate b-EtMe3Sb[Pd(dmit)2]2 and its deuterated sample are presented. The enhanced 1/T1 of 1H and 2D are well analyzed considering the r otations of methyl- and ethyl-groups of the cation with the activation energies of 200K and 1200K respectively. The 1/T1 and 1/T2 at the Sb site that is located on the 2-fold rotation axis remain active down to the lowest temperature with an algebraic temperature dependence of the correlation time as has been observed in the ac response of the dielectric constants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا