ﻻ يوجد ملخص باللغة العربية
Engineered electromagnetic fields in plasmonic nanopores enable enhanced optical detection and their use in single molecule sequencing. Here, a plasmonic nanopore prepared in a thick nanoporous film is used to investigate the interaction between the metal and a long-chain double strand DNA molecule. We discuss how the matrix of nanoporous metal can interact with the molecule thanks to: i) transient aspecific interactions between the porous surface and DNA and ii) optical forces exerted by the localized field in a metallic nanostructure. A duration of interaction up to tens of milliseconds enables to collect high signal-to-noise Raman vibrations allowing an easy label-free reading of information from the DNA molecule. Moreover, in order to further increase the event of detection rate, we tested a polymeric porous hydrogel placed beneath the solid-state membrane. This approach enables a slowdown of the molecule diffusion, thus increasing the number of detected interactions by a factor of about 20.
The programmable assembly of DNA strands is a promising tool for building tailored bottom-up nanostructures. Here, we present a plasmonic nanosystem obtained by the base-pairing mediated aggregation of gold nanoparticles (NPs) which are separately fu
Surface enhanced Raman scattering (SERS) process results in a tremendous increase of Raman scattering cross section of molecules adsorbed to plasmonic metals and influenced by numerous physico-chemical factors such as geometry and optical properties
Recently, studies have been carried out on attempts to combine surface-enhanced Surface-enhanced Raman spectroscopy (SERS) substrates that can be based on either localized surface plasmon (LSP) or surface plasmon polaritons (SPP) structures. By combi
We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built fro
Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-str