ﻻ يوجد ملخص باللغة العربية
We performed $^{185/187}$Re nuclear quadrupole resonance (NQR) measurements under pressure to investigate the superconducting properties of noncentrosymmetric superconductor Cd$_{2}$Re$_{2}$O$_{7}$ under various crystal structures. The pressure dependence of superconducting transition temperature $T_{rm c}$ determined through ac susceptibility measurements is consistent with the results of previous resistivity measurements [T. C. Kobayashi $et al$., J. Phys. Soc. Jpn. 80, 023715 (2011).]. Below 2.2 GPa, in the nuclear spin-lattice relaxation rate $1/T_{1}$, a clear coherence peak was observed just below $T_{rm c}$, indicating conventional $s$-wave superconductivity. In contrast, the coherence peak disappears at 3.1 GPa, suggesting a change in superconducting symmetry to the $p$-wave dominant state against pressure.
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the
We report $^{75}$As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO$_{0.92}$F$_{0.08}$ ($T_{rm c}$ = 23 K). The temperature dependence of the spin lattice relaxation rate (1/$T_1$) decreases below $T_{rm c}$ without
We have performed $^{63}$Cu nuclear magnetic resonance/nuclear quadrupole resonance measurements to investigate the magnetic and superconducting (SC) properties on a superconductivity dominant ($S$-type) single crystal of CeCu$_2$Si$_2$. Although the
We have performed the $^{125}$Te-nuclear magnetic resonance (NMR) measurement in the field along the $b$ axis on the newly discovered superconductor UTe$_2$, which is a candidate of a spin-triplet superconductor. The nuclear spin-lattice relaxation r
In this Rapid Communication, a set of $^{209}$Bi-nuclear magnetic resonance (NMR)/nuclear quadrupole resonance (NQR) measurements has been performed to investigate the physical properties of superconducting (SC) BaTi$_2$Bi$_2$O from a microscopic poi