ﻻ يوجد ملخص باللغة العربية
Evolving graphs in the real world are large-scale and constantly changing, as hundreds of thousands of updates may come every second. Monotonic algorithms such as Reachability and Shortest Path are widely used in real-time analytics to gain both static and temporal insights and can be accelerated by incremental computing. Existing streaming systems adopt the incremental computing model and achieve either low latency or high throughput, but not both. However, both high throughput and low latency are required in real scenarios such as financial fraud detection. This paper presents RisGraph, a real-time streaming system that provides low-latency analysis for each update with high throughput. RisGraph addresses the challenge with localized data access and inter-update parallelism. We propose a data structure named Indexed Adjacency Lists and use sparse arrays and Hybrid Parallel Mode to enable localized data access. To achieve inter-update parallelism, we propose a domain-specific concurrency control mechanism based on the classification of safe and unsafe updates. Experiments show that RisGraph can ingest millions of updates per second for graphs with several hundred million vertices and billions of edges, and the P999 processing time latency is within 20 milliseconds. RisGraph achieves orders-of-magnitude improvement on throughput when analyses are executed for each update without batching and performs better than existing systems with batches of up to 20 million updates.
The growing popularity of dynamic applications such as social networks provides a promising way to detect valuable information in real time. Efficient analysis over high-speed data from dynamic applications is of great significance. Data from these d
Arguably data is the new natural resource in the enterprise world with an unprecedented degree of proliferation. But to derive real-time actionable insights from the data, it is important to bridge the gap between managing the data that is being upda
We study the hop-constrained s-t path enumeration (HcPE) problem, which takes a graph $G$, two distinct vertices $s,t$ and a hop constraint $k$ as input, and outputs all paths from $s$ to $t$ whose length is at most $k$. The state-of-the-art algorith
We study persistent query evaluation over streaming graphs, which is becoming increasingly important. We focus on navigational queries that determine if there exists a path between two entities that satisfies a user-specified constraint. We adopt the
While experiments on fusion plasmas produce high-dimensional data time series with ever increasing magnitude and velocity, data analysis has been lagging behind this development. For example, many data analysis tasks are often performed in a manual,