ﻻ يوجد ملخص باللغة العربية
Magnetic Tunnel Junctions whose basic element consists of two ferromagnetic electrodes separated by an insulating non-magnetic barrier have become intensely studied and used in non-volatile spintronic devices. Since ballistic tunnel of spin-polarized electrons sensitively depends on the chemical composition and the atomic geometry of the lead/barrier interfaces their proper design is a key issue for achieving the required functionality of the devices such as e.g. a high tunnel magneto resistance. An important leap in the development of novel spintronic devices is to replace the insulating barrier by a ferroelectric which adds new additional functionality induced by the polarization direction in the barrier giving rise to the tunnel electro resistance (TER). The multiferroic tunnel junction Co/PbZr$_{0.2}$Ti$_{0.8}$O$_{3}$/La$_{2/3}$Sr$_{1/3}$MnO$_3$ (Co/PZT/LSMO) represents an archetype system for which - despite intense studies - no consensus exists for the interface geometry and their effect on transport properties. Here we provide the first analysis of the Co/PZT interface at the atomic scale using complementary techniques, namely x-ray diffraction and extended x-ray absorption fine structure in combination with x-ray magnetic circular dichroism and ab-initio calculations. The Co/PZT interface consists of one perovskite-type cobalt oxide unit cell [CoO$_{2}$/CoO/Ti(Zr)O$_{2}$] on which a locally ordered cobalt film grows. Magnetic moments (m) of cobalt lie in the range between m=2.3 and m=2.7$mu_{B}$, while for the interfacial titanium atoms they are small (m=+0.005 $mu_{B}$) and parallel to cobalt which is attributed to the presence of the cobalt-oxide interface layers. These insights into the atomistic relation between interface and magnetic properties is expected to pave the way for future high TER devices.
Among the recent discoveries of domain wall functionalities, the observation of electrical conduction at ferroelectric domain walls in the multiferroic insulator BiFeO3 has opened exciting new possibilities. Here, we report evidence of electrical con
The many surface reconstructions of (110)-oriented lanthanum--strontium manganite (La$_{0.8}$Sr$_{0.2}$MnO$_3$, LSMO) were followed as a function of the oxygen chemical potential ($mu_text{O}$) and the surface cation composition. Decreasing $mu_text{
5d iridates have shown vast emergent phenomena due to a strong interplay among its lattice, charge and spin degrees of freedom, because of which the potential in spintronic application of the thin-film form is highly leveraged. Here we have epitaxial
The magnetic structure of the mixed antiferromagnet NdMn$_{0.8}$Fe$_{0.2}$O$_3$ was resolved. Neutron powder diffraction data definitively resolve the Mn-sublattice with a magnetic propagation vector ${bf k} = (000)$ and with the magnetic structure (
Atomistic effective Hamiltonian simulations are used to investigate electrocaloric (EC) effects in the lead-free Ba(Zr$_{0.5}$Ti$_{0.5}$)O$_{3}$ (BZT) relaxor ferroelectric. We find that the EC coefficient varies non-monotonically with the field at a