ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical investigation on magnetic property of monolayer CrI3 from microscale to macroscale

113   0   0.0 ( 0 )
 نشر من قبل Dingchen Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic two-dimensional (2D) materials have received tremendous attention recently due to its potential application in spintronics and other magnetism related fields. To our knowledge, five kinds of 2D materials with intrinsic magnetism have been synthesized in experiment. They are CrI3, Cr2Ge2Te6, FePS3, Fe3GeTe2 and VSe2. Apart from the above intrinsic magnetic 2D materials, many strategies have also been proposed to induce magnetism in normal 2D materials such as atomic modification, spin valve and proximity effect. Various devices have also been designed to fulfill the basic functions of spintronics: inducing spin, manipulating spin and detecting spin.



قيم البحث

اقرأ أيضاً

113 - Zewen Wu , Jin Yu , Shengjun Yuan 2019
Two-dimensional CrI3 has attracted much attention as it is reported to be a ferromagnetic semiconductor with the Curie temperature around 45K. By performing first-principles calculations, we find that the magnetic ground state of CrI3 is variable und er biaxial strain. Our theoretical investigations show that the ground state of monolayer CrI3 is ferromagnetic under compression, but becomes antiferromagnetic under tension. Particularly, the transition occurs under a feasible in-plane strain around 1.8%. Accompanied by the transition of the magnetic ground state, it undergoes a transition from magnetic-metal to half-metal to half-semiconductor to spin-relevant semiconductor when strain varies from -15% to 10%. We attribute these transitions to the variation of the d-orbitals of Cr atoms and the p-orbitals of I atoms. Generally, we report a series of magnetic and electronic phase transition in strained CrI3, which will help both theoretical and experimental researchers for further understanding of the tunable electronic and magnetic properties of CrI3 and their analogous.
Based on first-principles method we predict a new low-energy Stone-Wales graphene SW40, which has an orthorhombic lattice with Pbam symmetry and 40 carbon atoms in its crystalline cell forming well-arranged Stone-Wales patterns. The calculated total energy of SW40 is just about 133 meV higher than that of graphene, indicating its excellent stability exceeds all the previously proposed graphene allotropes. We find that SW40 processes intrinsic Type-III Dirac-cone (Phys. Rev. Lett., 120, 237403, 2018) formed by band-crossing of a local linear-band and a local flat-band, which can result in highly anisotropic Fermions in the system. Interestingly, such intrinsic type-III Dirac-cone can be effectively tuned by inner-layer strains and it will be transferred into Type-II and Type-I Dirac-cones under tensile and compressed strains, respectively. Finally, a general tight-binding model was constructed to understand the electronic properties nearby the Fermi-level in SW40. The results show that type-III Dirac-cone feature can be well understood by the $pi$-electron interactions between adjacent Stone-Wales defects.
III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of part icular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.
237 - Lian-Ao Wu , Mike Guidry 2015
Graphene SU(4) quantum Hall symmetry is extended to SO(8), permitting analytical solutions for graphene in a magnetic field that break SU(4) spontaneously. We recover standard graphene SU(4) physics as one limit, but find new phases and new propertie s that may be relevant for understanding the ground state. The graphene SO(8) symmetry is found to be isomorphic to one that occurs extensively in nuclear structure physics, and very similar to one that describes high-temperature superconductors, suggesting deep mathematical connections among these physically-different fermionic systems.
Two-dimensional (2D) semiconductors have been proposed for heterogeneous integration with existing silicon technology; however, their chemical vapor deposition (CVD) growth temperatures are often too high. Here, we demonstrate direct CVD solid-source precursor synthesis of continuous monolayer (1L) MoS$_2$ films at 560 C in 50 min, within the 450-to-600 C, 2 h thermal budget window required for back-end-of-the-line compatibility with modern silicon technology. Transistor measurements reveal on-state current up to ~140 $mathrm{{mu}A/{mu}m}$ at 1 V drain-to-source voltage for 100 nm channel lengths, the highest reported to date for 1L MoS$_2$ grown below 600 C using solid-source precursors. The effective mobility from transfer length method test structures is $mathrm{29 pm 5 cm^2V^{-1}s^{-1}}$ at $mathrm{6.1 times 10^{12} cm^{-2}}$ electron density, which is comparable to mobilities reported from films grown at higher temperatures. The results of this work provide a path toward the realization of high-quality, thermal-budget-compatible 2D semiconductors for heterogeneous integration with silicon manufacturing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا