ﻻ يوجد ملخص باللغة العربية
In this paper, the global strong axisymmetric solutions for the inhomogeneous incompressible Navier-Stokes system are established in the exterior of a cylinder subject to the Dirichlet boundary conditions. Moreover, the vacuum is allowed in these solutions. One of the key ingredients of the analysis is to obtain the ${L^{2}(s,T;L^{infty}(Omega))}$ bound for the velocity field, where the axisymmetry of the solutions plays an important role.
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $dot{H}^{-alpha}(mathbb{R}^{3})$ or $dot{H}^{-alpha}(mathbb{T}^{3})$ with $0<alphaleq 1/2$. This is ac
In this paper we study a finite-depth layer of viscous incompressible fluid in dimension $n ge 2$, modeled by the Navier-Stokes equations. The fluid is assumed to be bounded below by a flat rigid surface and above by a free, moving interface. A unifo
This paper deals with the combined incompressible quasineutral limit of the weak martingale solution of the compressible Navier-Stokes-Poisson system perturbed by a stochastic forcing term in the whole space. In the framework of ill-prepared initial
In to previous papers by the authors, classes of initial data to the three dimensional, incompressible Navier-Stokes equations were presented, generating a global smooth solution although the norm of the initial data may be chosen arbitrarily large.