ﻻ يوجد ملخص باللغة العربية
The sensitivity of the gravitational-wave detector KAGRA, presently under construction, will be limited by quantum noise in a large fraction of its spectrum. The most promising technique to increase the detector sensitivity is the injection of squeezed states of light, where the squeezing angle is dynamically rotated by a Fabry-Perot filter cavity. One of the main issues in the filter cavity design and realization is the optical losses due to the mirror surface imperfections. In this work we present a study of the specifications for the mirrors to be used in a 300 m filter cavity for the KAGRA detector. A prototype of the cavity will be constructed at the National Astronomical Observatory of Japan, inside the infrastructure of the former TAMA interferometer. We also discuss the potential improvement of the KAGRA sensitivity, based on a model of various realistic sources of losses and their influence on the squeezing amplitude.
Earth-based gravitational-wave detectors will be limited by quantum noise in a large part of their spectrum. The most promising technique to achieve a broadband reduction of such noise is the injection of a frequency dependent squeezed vacuum state f
KAGRA is the first large-scale gravitational-wave detector with cryogenic test masses. Its target sensitivity is limited mostly by quantum noise in the observation frequency band owing to the remarkable reduction of thermal noise at cryogenic tempera
With the advent of gravitational wave astronomy, techniques to extend the reach of gravitational wave detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected, many more are below the surface of the
Construction of the Japanese second-generation gravitational-wave detector KAGRA has been started. In the next 6 sim 7 years, we will be able to observe the space-time ripple from faraway galaxies. KAGRA is equipped with the latest advanced technolog
This paper reports on the design and characteristics of a compact module integrating an optical displacement sensor and an electromagnetic actuator for use with vibration-isolation systems installed in KAGRA, the 3-km baseline gravitational-wave dete