ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Electromagnetic Counterparts to Gravitational-wave Merger Events with the Prototype Gravitational-wave Optical Transient Observer (GOTO-4)

145   0   0.0 ( 0 )
 نشر من قبل Ben Gompertz
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the results of optical follow-up observations of 29 gravitational-wave triggers during the first half of the LIGO-Virgo Collaboration (LVC) O3 run with the Gravitational-wave Optical Transient Observer (GOTO) in its prototype 4-telescope configuration (GOTO-4). While no viable electromagnetic counterpart candidate was identified, we estimate our 3D (volumetric) coverage using test light curves of on- and off-axis gamma-ray bursts and kilonovae. In cases where the source region was observable immediately, GOTO-4 was able to respond to a GW alert in less than a minute. The average time of first observation was $8.79$ hours after receiving an alert ($9.90$ hours after trigger). A mean of $732.3$ square degrees were tiled per event, representing on average $45.3$ per cent of the LVC probability map, or $70.3$ per cent of the observable probability. This coverage will further improve as the facility scales up alongside the localisation performance of the evolving gravitational-wave detector network. Even in its 4-telescope prototype configuration, GOTO is capable of detecting AT2017gfo-like kilonovae beyond 200~Mpc in favourable observing conditions. We cannot currently place meaningful electromagnetic limits on the population of distant ($hat{D}_L = 1.3$~Gpc) binary black hole mergers because our test models are too faint to recover at this distance. However, as GOTO is upgraded towards its full 32-telescope, 2 node (La Palma & Australia) configuration, it is expected to be sufficiently sensitive to cover the predicted O4 binary neutron star merger volume, and will be able to respond to both northern and southern triggers.



قيم البحث

اقرأ أيضاً

The typical detection rate of $sim1$ gamma-ray burst (GRB) per day by the emph{Fermi} Gamma-ray Burst Monitor (GBM) provides a valuable opportunity to further our understanding of GRB physics. However, the large uncertainty of the emph{Fermi} localiz ation typically prevents rapid identification of multi-wavelength counterparts. We report the follow-up of 93 emph{Fermi} GRBs with the Gravitational-wave Optical Transient Observer (GOTO) prototype on La Palma. We selected 53 events (based on favourable observing conditions) for detailed analysis, and to demonstrate our strategy of searching for optical counterparts. We apply a filtering process consisting of both automated and manual steps to 60,085 candidates initially, rejecting all but 29, arising from 15 events. With $approx3$ GRB afterglows expected to be detectable with GOTO from our sample, most of the candidates are unlikely to be related to the GRBs. Since we did not have multiple observations for those candidates, we cannot confidently confirm the association between the transients and the GRBs. Our results show that GOTO can effectively search for GRB optical counterparts thanks to its large field of view of $approx40$ square degrees and its depth of $approx20$ mag. We also detail several methods to improve our overall performance for future follow-up programs of emph{Fermi} GRBs.
The Gravitational-wave Optical Transient Observer (GOTO) is a wide-field telescope project focused on detecting optical counterparts to gravitational-wave sources. GOTO uses arrays of 40 cm unit telescopes (UTs) on a shared robotic mount, which scale s to provide large fields of view in a cost-effective manner. A complete GOTO mount uses 8 unit telescopes to give an overall field of view of 40 square degrees, and can reach a depth of 20th magnitude in three minutes. The GOTO-4 prototype was inaugurated with 4 unit telescopes in 2017 on La Palma, and was upgraded to a full 8-telescope array in 2020. A second 8-UT mount will be installed on La Palma in early 2021, and another GOTO node with two more mount systems is planned for a southern site in Australia. When complete, each mount will be networked to form a robotic, dual-hemisphere observatory, which will survey the entire visible sky every few nights and enable rapid follow-up detections of transient sources.
The detection of electromagnetic (EM) emission following the gravitational wave (GW) event GW170817 opened the era of multi-messenger astronomy with GWs and provided the first direct evidence that at least a fraction of binary neutron star (BNS) merg ers are progenitors of short Gamma-Ray Bursts (GRBs). GRBs are also expected to emit very-high energy (VHE, > 100 GeV) photons, as proven by the recent MAGIC and H.E.S.S. observations. One of the challenges for future multi-messenger observations will be the detection of such VHE emission from GRBs in association with GWs. In the next years, the Cherenkov Telescope Array (CTA) will be a key instrument for the EM follow-up of GW events in the VHE range, owing to its unprecedented sensitivity, rapid response, and capability to monitor a large sky area via scan-mode operation. We present the CTA GW follow-up program, with a focus on the searches for short GRBs possibly associated with BNS mergers. We investigate the possible observational strategies and we outline the prospects for the detection of VHE EM counterparts to transient GW events.
The recent discoveries of gravitational wave events and in one case also its electromagnetic (EM) counterpart allow us to study the Universe in a novel way. The increased sensitivity of the LIGO and Virgo detectors has opened the possibility for regu lar detections of EM transient events from mergers of stellar remnants. Gravitational wave sources are expected to have sky localisation up to a few hundred square degrees, thus Gaia as an all-sky multi-epoch photometric survey has the potential to be a good tool to search for the EM counterparts. In this paper we study the possibility of detecting EM counterparts to gravitational wave sources using the Gaia Science Alerts system. We develop an extension to current used algorithms to find transients and test its capabilities in discovering candidate transients on a sample of events from the observation periods O1 and O2 of LIGO and Virgo. For the gravitational wave events from the current run O3 we expect that about 16 (25) per cent should fall in sky regions observed by Gaia 7 (10) days after gravitational wave. The new algorithm will provide about 10 candidates per day from the whole sky.
The Gravitational-wave Optical Transient Observer (GOTO) is a wide-field telescope project aimed at detecting optical counterparts to gravitational wave sources. The prototype instrument was inaugurated in July 2017 on La Palma in the Canary Islands. We describe the GOTO Telescope Control System (G-TeCS), a custom robotic control system written in Python which autonomously manages the telescope hardware and nightly operations. The system comprises of multiple independent control daemons, which are supervised by a master control program known as the pilot. Observations are decided by a just-in-time scheduler, which instructs the pilot what to observe in real time and provides quick follow-up of transient events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا