ﻻ يوجد ملخص باللغة العربية
We study the weak gravity conjecture in non-supersymmetric string theory setups. Precisely, those are type I string theory with supersymmetry broken `a la Scherk-Schwarz and open strings on D branes wrapped around magnetized tori in type II string theory. We compute long-range interactions between identical branes at one-loop and compare them to the weak gravity conjecture for higher-degree forms. In our examples, SUSY breaking generates interactions between branes, which are not anymore BPS, in such a way that the weak gravity conjecture is verified. In type I with the Scherk-Schwarz mechanism, the tension of the branes is reduced by one-loop quantum effects, so that there are long-range repulsive forces. The correlation of the non-vanishing brane potential with the presence of a running modulus and of possible D branes bound states nicely connects to other swampland conjectures. For magnetized branes in type II strings, we check that non-BPS branes experience a long-range repulsion whenever the open string spectrum is tachyon-free. Ultimately, the role of stringy objects in the discussion makes it compelling to further understand swampland conjectures in strings with broken SUSY, let alone their phenomenological relevance.
We study one-loop divergences in Einstein-Maxwell theory and their implications for the weak gravity conjecture. In particular, we show that renormalization of these divergences leads to positivity of higher-derivative corrections to the charge-to-ma
We study the perturbative stability of four settings that arise in String Theory, when dilaton potentials accompany the breaking of Supersymmetry, in the USp(32) and U(32) orientifold models, and also in the heterotic SO(16)xSO(16) model. The first t
Positivity bounds coming from consistency of UV scattering amplitudes are in general insufficient to prove the weak gravity conjecture for theories beyond Einstein-Maxwell. Additional ingredients about the UV may be necessary to exclude those regions
Intersecting D-brane models and their T-dual magnetic compactifications yield attractive models of particle physics where magnetic flux plays a twofold role, being the source of fermion chirality as well as supersymmetry breaking. A potential problem
We study non-topological, charged planar walls (Q-walls) in the context of a particle physics model with supersymmetry broken by low-energy gauge mediation. Analytical properties are derived within the flat-potential approximation for the flat-direct