For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, and $Wsubset pi_0$, the intersection of kernels of screenings inside a vacuum Fock module $pi_0$. This kernel $W$ is generated by two states: a conformal vector, and a state $delta_{-1}left|0right>$. We show that the latter endows $pi_0$ with a canonical notion of translation $T^{text{(aff)}}$, and use it to define the densities in $pi_0$ of integrals of motion of classical Conformal Affine Toda field theory. The $text{Aut},mathcal O$-action defines a bundle $Pi$ over $mathbb P^1$ with fibre $pi_0$. We show that the product bundles $Pi otimes Omega^j$, where $Omega^j$ are tensor powers of the canonical bundle, come endowed with a one-parameter family of holomorphic connections, $ abla^{text{(aff)}} - alpha T^{text{(aff)}}$, $alphain mathbb C$. The integrals of motion of Conformal Affine Toda define global sections $[mathbf v_j dt^{j+1} ] in H^1(mathbb P^1, Piotimes Omega^j, abla^{text{(aff)}})$ of the de Rham cohomology of $ abla^{mathrm{(aff)}}$. Any choice of ${mathfrak g}$-Miura oper $chi$ gives a connection $ abla^{mathrm{(aff)}}_chi$ on $Omega^j$. Using coinvariants, we define a map $mathsf F_chi$ from sections of $Pi otimes Omega^j$ to sections of $Omega^j$. We show that $mathsf F_chi abla^{text{(aff)}} = abla^{text{(aff)}}_chi mathsf F_chi$, so that $mathsf F_chi$ descends to a well-defined map of cohomologies. Under this map, the classes $[mathbf v_j dt^{j+1} ]$ are sent to the classes in $H^1(mathbb P^1, Omega^j, abla^{text{(aff)}}_chi)$ defined by the ${mathfrak g}$-oper underlying $chi$.