ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupled Dynamics on Hypergraphs: Master Stability of Steady States and Synchronization

58   0   0.0 ( 0 )
 نشر من قبل Raffaella Mulas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the study of dynamical systems on networks/graphs, a key theme is how the network topology influences stability for steady states or synchronized states. Ideally, one would like to derive conditions for stability or instability that instead of microscopic details of the individual nodes/vertices rather make the influence of the network coupling topology visible. The master stability function is an important such tool to achieve this goal. Here we generalize the master stability approach to hypergraphs. A hypergraph coupling structure is important as it allows us to take into account arbitrary higher-order interactions between nodes. As for instance in the theory of coupled map lattices, we study Laplace type interaction structures in detail. Since the spectral theory of Laplacians on hypergraphs is richer than on graphs, we see the possibility of new dynamical phenomena. More generally, our arguments provide a blueprint for how to generalize dynamical structures and results from graphs to hypergraphs.



قيم البحث

اقرأ أيضاً

We examine the stochastic dynamics of two enzymes that are mechanically coupled to each other e.g. through an elastic substrate or a fluid medium. The enzymes undergo conformational changes during their catalytic cycle, which itself is driven by stoc hastic steps along a biased chemical free energy landscape. We find conditions under which the enzymes can synchronize their catalytic steps, and discover that the coupling can lead to a significant enhancement in the overall catalytic rate of the enzymes. Both effects can be understood as arising from a global bifurcation in the underlying dynamical system at sufficiently strong coupling. Our findings suggest that despite their molecular scale enzymes can be cooperative and improve their performance in dense metabolic clusters.
Suppose we are given a system of coupled oscillators on an arbitrary graph along with the trajectory of the system during some period. Can we predict whether the system will eventually synchronize? This is an important but analytically intractable qu estion especially when the structure of the underlying graph is highly varied. In this work, we take an entirely different approach that we call learning to predict synchronization (L2PSync), by viewing it as a classification problem for sets of graphs paired with initial dynamics into two classes: `synchronizing or `non-synchronizing. Our conclusion is that, once trained on large enough datasets of synchronizing and non-synchronizing dynamics on heterogeneous sets of graphs, a number of binary classification algorithms can successfully predict the future of an unknown system with surprising accuracy. We also propose an ensemble prediction algorithm that scales up our method to large graphs by training on dynamics observed from multiple random subgraphs. We find that in many instances, the first few iterations of the dynamics are far more important than the static features of the graphs. We demonstrate our method on three models of continuous and discrete coupled oscillators -- The Kuramoto model, the Firefly Cellular Automata, and the Greenberg-Hastings model.
We consider the dynamics of semiflows of patterns on unbounded domains that are equivariant under a noncompact group action. We exploit the unbounded nature of the domain in a setting where there is a strong `global norm and a weak `local norm. Relat ive equilibria whose group orbits are closed manifolds for a compact group action need not be closed in a noncompact setting; the closure of a group orbit of a solution can contain `co-solutions. The main result of the paper is to show that co-solutions inherit stability in the sense that co-solutions of a Lyapunov stable pattern are also stable (but in a weaker sense). This means that the existence of a single group orbit of stable relative equilibria may force the existence of quite distinct group orbits of relative equilibria, and these are also stable. This is in contrast to the case for finite dimensional dynamical systems where group orbits of relative equilibria are typically isolated.
This work introduces a methodology for studying synchronization in adaptive networks with heterogeneous plasticity (adaptation) rules. As a paradigmatic model, we consider a network of adaptively coupled phase oscillators with distance-dependent adap tations. For this system, we extend the master stability function approach to adaptive networks with heterogeneous adaptation. Our method allows for separating the contributions of network structure, local node dynamics, and heterogeneous adaptation in determining synchronization. Utilizing our proposed methodology, we explain mechanisms leading to synchronization or desynchronization by enhanced long-range connections in nonlocally coupled ring networks and networks with Gaussian distance-dependent coupling weights equipped with a biologically motivated plasticity rule.
We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchro nization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا