ﻻ يوجد ملخص باللغة العربية
Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive, and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory of transport, we compute the KPZ coupling strength for the Heisenberg chain as a function of temperature, directly from microscopics; the results agree well with density-matrix renormalization group simulations. We establish a rigorous quantum-classical correspondence between the giant quasiparticles that govern superdiffusion and solitons in the classical continuous Landau-Lifshitz ferromagnet. We conclude that KPZ universality has the same origin in classical and quantum integrable isotropic magnets: a finite-temperature gas of low-energy classical solitons.
Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with nonabelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue t
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable s
The existence or absence of non-analytic cusps in the Loschmidt-echo return rate is traditionally employed to distinguish between a regular dynamical phase (regular cusps) and a trivial phase (no cusps) in quantum spin chains after a global quench. H
The false vacuum decay has been a central theme in physics for half a century with applications to cosmology and to the theory of fundamental interactions. This fascinating phenomenon is even more intriguing when combined with the confinement of elem
Anomalous finite-temperature transport has recently been observed in numerical studies of various integrable models in one dimension; these models share the feature of being invariant under a continuous non-abelian global symmetry. This work offers a