ﻻ يوجد ملخص باللغة العربية
Toward quantum machine learning deployed on imperfect near-term intermediate-scale quantum (NISQ) processors, the entire physical implementation of should include as less as possible hand-designed modules with only a few ad-hoc parameters to be determined. This work presents such a hardware-friendly end-to-end quantum machine learning scheme that can be implemented with imperfect near-term intermediate-scale quantum (NISQ) processors. The proposal transforms the machine learning task to the optimization of controlled quantum dynamics, in which the learning model is parameterized by experimentally tunable control variables. Our design also enables automated feature selection by encoding the raw input to quantum states through agent control variables. Comparing with the gate-based parameterized quantum circuits, the proposed end-to-end quantum learning model is easy to implement as there are only few ad-hoc parameters to be determined. Numerical simulations on the benchmarking MNIST dataset demonstrate that the model can achieve high performance using only 3-5 qubits without downsizing the dataset, which shows great potential for accomplishing large-scale real-world learning tasks on NISQ processors.arning models. The scheme is promising for efficiently performing large-scale real-world learning tasks using intermediate-scale quantum processors.
We introduce a hybrid model combining a quantum-inspired tensor network and a variational quantum circuit to perform supervised learning tasks. This architecture allows for the classical and quantum parts of the model to be trained simultaneously, pr
Quantum key distribution (QKD) is a cornerstone of the secure quantum encryption. Building on the quantum irreversibility, we develop a technique reborning the existing QKDs into protocols that are unrestricted in distance and have unprecedented high
Labeling real-world datasets is time consuming but indispensable for supervised machine learning models. A common solution is to distribute the labeling task across a large number of non-expert workers via crowd-sourcing. Due to the varying backgroun
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parame
Machine learning methods have proved to be useful for the recognition of patterns in statistical data. The measurement outcomes are intrinsically random in quantum physics, however, they do have a pattern when the measurements are performed successiv