ترغب بنشر مسار تعليمي؟ اضغط هنا

Exhausting all exact solutions of BPS domain wall networks in arbitrary dimensions

242   0   0.0 ( 0 )
 نشر من قبل Minoru Eto
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We obtain full moduli parameters for generic non-planar BPS networks of domain walls in an extended Abelian-Higgs model with $N$ complex scalar fields, and exhaust all exact solutions in the corresponding $mathbb{C}P^{N -1}$ model. We develop a convenient description by grid diagrams which are polytopes determined by mass parameters of the model. To illustrate the validity of our method, we work out non-planar domain wall networks for lower $N$ in $3+1$ dimensions. In general, the networks can have compact vacuum bubbles, which are finite vacuum regions surrounded by domain walls, when the polytopes of the grid diagrams have inner vertices, and the size of bubbles can be controlled by moduli parameters. We also construct domain wall networks with bubbles in the shapes of the Platonic, Archimedean, Catalan, and Kepler-Poinsot solids.



قيم البحث

اقرأ أيضاً

Exact analytic solutions of static, stable, non-planar BPS domain wall junctions are obtained in extended Abelian-Higgs models in $(D+1)$-dimensional spacetime. For specific choice of mass parameters, the Lagrangian is invariant under the symmetric g roup ${cal S}_{D+1}$ of degree $D+1$ spontaneously broken down to ${cal S}_D$ in vacua, admitting ${cal S}_{D+1}/{cal S}_D$ domain wall junctions. In $D=2$, there are three vacua and three domain walls meeting at a junction point, in which the conventional topological charges $Y$ and $Z$ exist for the BPS domain wall junctions and the BPS domain walls, respectively as known before. In $D=3$, there are four vacua, six domain walls, four junction lines on which three domain walls meet, and one junction point on which all the six domain walls meet. We define a new topological charge $X$ for the junction point in addition to the conventional topological charges $Y$ and $Z$. In general dimensions, we find that the configuration expressed in the $D$-dimensional real space is dual to a regular $D$-simplex in the $D$-dimensional internal space and that a $d$-dimensional subsimplex of the regular $D$-simplex corresponds to a $(D-d)$-dimensional intersection. Topological charges are generalized to the level-$d$ wall charge $W_d$ for the $d$-dimensional subsimplexes.
A family of exact conformal field theories is constructed which describe charged black strings in three dimensions. Unlike previous charged black hole or extended black hole solutions in string theory, the low energy spacetime metric has a regular in ner horizon (in addition to the event horizon) and a timelike singularity. As the charge to mass ratio approaches unity, the event horizon remains but the singularity disappears.
Supersymmetric gauge theories in four dimensions can display interesting non-perturbative phenomena. Although the superpotential dynamically generated by these phenomena can be highly nontrivial, it can often be exactly determined. We discuss some ge neral techniques for analyzing the Wilsonian superpotential and demonstrate them with simple but non-trivial examples.
We investigate a coupled system of a Dirac particle and a pseudoscalar field in the form of a soliton in (1+1) dimensions and find some of its exact solutions numerically. We solve the coupled set of equations self-consistently and non-perturbative ly by the use of a numerical method and obtain the bound states of the fermion and the shape of the soliton. That is the shape of the static soliton in this problem is not prescribed and is determined by the equations themselves. This work goes beyond the perturbation theory in which the back reaction of the fermion on soliton is its first order correction. We compare our results to those of an exactly solvable model in which the soliton is prescribed. We show that, as expected, the total energy of our system is lower than the prescribed one. We also compute non-perturbatively the vacuum polarization of the fermion induced by the presence of the soliton and display the results. Moreover, we compute the soliton mass as a function of the boson and fermion masses and find that the results are consistent with Skyrmes phenomenological conjecture. Finally, we show that for fixed values of the parameters, the shape of the soliton obtained from our exact solutions depends slightly on the fermionic state to which it is coupled. However, the exact shape of the soliton is always very close to the isolated kink.
We study a class of exact supersymmetric solutions of type IIB Supergravity. They have an SO(4) x SU(2) x U(1) isometry and preserve generically 4 of the 32 supersymmetries of the theory. Asymptotically AdS_5 x S^5 solutions in this class are dual to 1/8 BPS chiral operators which preserve the same symmetries in the N=4 SYM theory. We analyse the solutions to these equations in a large radius asymptotic expansion: they carry charges with respect to two U(1) KK gauge fields and their mass saturates the expected BPS bound. We also show how the same formalism is suitable for the description of the AdS_5 x Y^{p,q} geometries and a class of their excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا