ﻻ يوجد ملخص باللغة العربية
CAlcium fluoride for the study of Neutrinos and Dark matters by Low-energy Spectrometer (CANDLES) searches for neutrino-less double beta decay of $^{48}$Ca using a CaF$_2$ scintillator array. A high Q-value of $^{48}$Ca at 4,272 keV enabled us to achieve very low background condition, however, at the same it causes difficulties in calibrating the detectors Q-value region because of the absence of a standard high-energy $gamma$-ray source. Therefore, we have developed a novel calibration system based on $gamma$-ray emission by neutron capture on $^{28}$Si, $^{56}$Fe and $^{58}$Ni nuclei. In the paper, we report the development of the new calibration system as well as the results of energy calibration in CANDLES up to 9 MeV.
In a neutrinoless double-beta decay ($0 ubetabeta$) experiment, energy resolution is important to distinguish between $0 ubetabeta$ and background events. CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer (CANDLES)
The newly built second experimental area EAR2 of the n_TOF spallation neutron source at CERN allows to perform (n, charged particles) experiments on short-lived highly radioactive targets. This paper describes a detection apparatus and the experiment
Gamma sources are routinely used to calibrate the energy scale and resolution of liquid scintillator detectors. However, non-scintillating material surrounding the source introduces energy losses, which may bias the determination of the centroid and
We derive the full expression for the shape of the charge spectrum that results from the illumination of a photo-multiplier tube. The derivation is for low intensity illumination with constant gain, a common condition for most nuclear and particle ph
We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley Natio