ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental observation of coherent-information superadditivity in a dephrasure channel

86   0   0.0 ( 0 )
 نشر من قبل Yu Meng
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an experimental approach to construct a dephrasure channel, which contains both dephasing and erasure noises, and can be used as an efficient tool to study the superadditivity of coherent information. By using a three-fold dephrasure channel, the superadditivity of coherent information is observed, and a substantial gap is found between the zero single-letter coherent information and zero quantum capacity. Particularly, we find that when the coherent information of n channel uses is zero, in the case of larger number of channel uses, it will become positive. These phenomena exhibit a more obvious superadditivity of coherent information than previous works, and demonstrate a higher threshold for non-zero quantum capacity. Such novel channels built in our experiment also can provide a useful platform to study the non-additive properties of coherent information and quantum channel capacity.



قيم البحث

اقرأ أيضاً

105 - Sergey N. Filippov 2021
Losses in quantum communication lines severely affect the rates of reliable information transmission and are usually considered to be state-independent. However, the loss probability does depend on the system state in general, with the polarization d ependent losses being a prominent example. Here we analyze biased trace decreasing quantum operations that assign different loss probabilities to states and introduce the concept of a generalized erasure channel. We find lower and upper bounds for the classical and quantum capacities of the generalized erasure channel as well as characterize its degradability and antidegradability. We reveal superadditivity of coherent information in the case of the polarization dependent losses, with the difference between the two-letter quantum capacity and the single-letter quantum capacity exceeding $7.197 cdot 10^{-3}$ bit per qubit sent, the greatest value among qubit-input channels reported so far.
82 - Sergey N. Filippov 2021
Coherent information quantifies the achievable rate of the reliable quantum information transmission through a communication channel. Use of the correlated quantum states (multiletter codes) instead of the factorized ones (single-letter codes) may re sult in an increase in the achievable rate, a phenomenon known as the coherent-information superadditivity. However, even for simple physical models of channels it is rather difficult to detect the superadditivity and find the advantageous multiletter codes. Here we consider the case of polarization dependent losses and propose some physically motivated multiletter codes which outperform all single-letter ones in a wide range of the channel parameters. We show that in the asymptotic limit of the infinite code length the superadditivity phenomenon takes place whenever the communication channel is neither degradable nor antidegradable. Besides the superadditivity identification, we also provide a method how to modify the proposed codes and get a higher quantum communication rate by doubling the code length. The obtained results give a deeper understanding of useful multiletter codes and may serve as a benchmark for quantum capacity estimations and future approaches toward an optimal strategy to transfer quantum information.
The recently theoretical and experimental researches related to $mathcal{PT}$-symmetric system have attracted unprecedented attention because of various novel features and potentials in extending canonical quantum mechanics. However, as the counterpa rt of $mathcal{PT}$-symmetry, there are only a few researches on anti-$mathcal{PT}$-symmetry. Here, we propose an algorithm for simulating the universal anti-$mathcal{PT}$-symmetric system with quantum circuit. Utilizing the protocols, an oscillation of information flow is observed for the first time in our Nuclear Magnetic Resonance quantum simulator. We will show that information will recover from the environment completely when the anti-$mathcal{PT}$-symmetry is broken, whereas no information can be retrieved in the symmetry-unbroken phase. Our work opens the gate for practical quantum simulation and experimental investigation of universal anti-$mathcal{PT}$-symmetric system in quantum computer.
In recent experiments of laser pulse interaction at relativistic intensities with a low density plasma, the proton radiography technique showed evidence of long--lived field structures generated after the self-channeling of the laser pulse. We presen t 2D particle-in-cell simulations of this interaction regime, where the dynamics of similar structures has been resolved with high temporal and spatial resolution. An axially symmetrical field pattern, resembling both soliton-like and vortex structures, has been observed. A study of the physics of such structures and a comparison with experimental data is in progress.
171 - Mark M. Wilde 2020
This paper introduces coherent quantum channel discrimination as a coherent version of conventional quantum channel discrimination. Coherent channel discrimination is phrased here as a quantum interactive proof system between a verifier and a prover, wherein the goal of the prover is to distinguish two channels called in superposition in order to distill a Bell state at the end. The key measure considered here is the success probability of distilling a Bell state, and I prove that this success probability does not increase under the action of a quantum superchannel, thus establishing this measure as a fundamental measure of channel distinguishability. Also, I establish some bounds on this success probability in terms of the success probability of conventional channel discrimination. Finally, I provide an explicit semi-definite program that can compute the success probability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا