ﻻ يوجد ملخص باللغة العربية
A person tends to generate dynamic attention towards speech under complicated environments. Based on this phenomenon, we propose a framework combining dynamic attention and recursive learning together for monaural speech enhancement. Apart from a major noise reduction network, we design a separated sub-network, which adaptively generates the attention distribution to control the information flow throughout the major network. To effectively decrease the number of trainable parameters, recursive learning is introduced, which means that the network is reused for multiple stages, where the intermediate output in each stage is correlated with a memory mechanism. As a result, a more flexible and better estimation can be obtained. We conduct experiments on TIMIT corpus. Experimental results show that the proposed architecture obtains consistently better performance than recent state-of-the-art models in terms of both PESQ and STOI scores.
This paper proposes an noise type classification aided attention-based neural network approach for monaural speech enhancement. The network is constructed based on a previous work by introducing a noise classification subnetwork into the structure an
The generative adversarial networks (GANs) have facilitated the development of speech enhancement recently. Nevertheless, the performance advantage is still limited when compared with state-of-the-art models. In this paper, we propose a powerful Dyna
In this paper, we propose a type of neural network with feedback learning in the time domain called FTNet for monaural speech enhancement, where the proposed network consists of three principal components. The first part is called stage recurrent neu
This paper proposes a delayed subband LSTM network for online monaural (single-channel) speech enhancement. The proposed method is developed in the short time Fourier transform (STFT) domain. Online processing requires frame-by-frame signal reception
Deep dilated temporal convolutional networks (TCN) have been proved to be very effective in sequence modeling. In this paper we propose several improvements of TCN for end-to-end approach to monaural speech separation, which consists of 1) multi-scal