ﻻ يوجد ملخص باللغة العربية
There has become of increasing interest in transcranial alternating current stimulation (tACS) since its inception nearly a decade ago. tACS in modulating brain state is an active area of research and has been demonstrated effective in various neuropsychological and clinical domains. In the visual domain, much effort has been dedicated to brain rhythms and rhythmic stimulation, i.e., tACS. However, little is known about the interplay between the rhythmic stimulation and visual stimulation. Here, we used steady-state visual evoked potential (SSVEP), induced by flickering driving as a widely used technique for frequency-tagging, to investigate the aftereffect of tACS in healthy human subjects. Seven blocks of 64-channel electroencephalogram were recorded before and after the administration of 20-min 10-Hz tACS, while subjects performed several blocks of SSVEP tasks. We characterized the physiological properties of tACS aftereffect by comparing and validating the temporal, spatial, spatiotemporal and signal-to-noise ratio (SNR) patterns between and within blocks in real tACS and sham tACS. Our result revealed that tACS boosted the 10-Hz SSVEP significantly. Besides, the aftereffect on SSVEP was mitigated with time and lasted up to 5 min. Our results demonstrate the feasibility of facilitating the flickering driving by external rhythmic stimulation and open a new possibility to alter the brain state in a direction by noninvasive transcranial brain stimulation.
Steady-state visual evoked potentials (SSVEP) brain-computer interface (BCI) provides reliable responses leading to high accuracy and information throughput. But achieving high accuracy typically requires a relatively long time window of one second o
Steady-State Visual Evoked Potentials (SSVEPs) are neural oscillations from the parietal and occipital regions of the brain that are evoked from flickering visual stimuli. SSVEPs are robust signals measurable in the electroencephalogram (EEG) and are
Objective: This paper aims to demonstrate functional discriminability among restored hand sensations with different locations, qualities, and intensities that are evoked by microelectrode stimulation of residual afferent fibers in human amputees. Met
The relation between spontaneous and stimulated global brain activity is a fundamental problem in the understanding of brain functions. This question is investigated both theoretically and experimentally within the context of nonequilibrium fluctuati
The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connec