ترغب بنشر مسار تعليمي؟ اضغط هنا

Topology and Content Co-Alignment Graph Convolutional Learning

65   0   0.0 ( 0 )
 نشر من قبل Min Shi Mr.
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In traditional Graph Neural Networks (GNN), graph convolutional learning is carried out through topology-driven recursive node content aggregation for network representation learning. In reality, network topology and node content are not always consistent because of irrelevant or missing links between nodes. A pure topology-driven feature aggregation approach between unaligned neighborhoods deteriorates learning for nodes with poor structure-content consistency, and incorrect messages could propagate over the whole network as a result. In this paper, we advocate co-alignment graph convolutional learning (CoGL), by aligning the topology and content networks to maximize consistency. Our theme is to force the topology network to respect underlying content network while simultaneously optimizing the content network to respect the topology for optimized representation learning. Given a network, CoGL first reconstructs a content network from node features then co-aligns the content network and the original network though a unified optimization goal with (1) minimized content loss, (2) minimized classification loss, and (3) minimized adversarial loss. Experiments on six benchmarks demonstrate that CoGL significantly outperforms existing state-of-the-art GNN models.



قيم البحث

اقرأ أيضاً

Graph neural networks (GNN) has been demonstrated to be effective in classifying graph structures. To further improve the graph representation learning ability, hierarchical GNN has been explored. It leverages the differentiable pooling to cluster no des into fixed groups, and generates a coarse-grained structure accompanied with the shrinking of the original graph. However, such clustering would discard some graph information and achieve the suboptimal results. It is because the node inherently has different characteristics or roles, and two non-isomorphic graphs may have the same coarse-grained structure that cannot be distinguished after pooling. To compensate the loss caused by coarse-grained clustering and further advance GNN, we propose a multi-channel graph convolutional networks (MuchGCN). It is motivated by the convolutional neural networks, at which a series of channels are encoded to preserve the comprehensive characteristics of the input image. Thus, we define the specific graph convolutions to learn a series of graph channels at each layer, and pool graphs iteratively to encode the hierarchical structures. Experiments have been carefully carried out to demonstrate the superiority of MuchGCN over the state-of-the-art graph classification algorithms.
92 - Hailong Li , Naiyue Chen 2021
Network alignment is a problem of finding the node mapping between similar networks. It links the data from separate sources and is widely studied in bioinformation and social network fields. The critical difference between network alignment and exac t graph matching is that the network alignment considers node mapping in non-isomorphic graphs with error tolerance. Researchers usually utilize AC (accuracy) to measure the performance of network alignments which comparing each output element with the benchmark directly. However, this metric neglects that some nodes are naturally indistinguishable even in single graphs (e.g., nodes have the same neighbors) and no need to distinguish across graphs. Such neglect leads to the underestimation of models. We propose an unbiased metric for network alignment that takes indistinguishable nodes into consideration to address this problem. Our detailed experiments with different scales on both synthetic and real-world datasets demonstrate that the proposed metric correctly reflects the deviation of result mapping from benchmark mapping as standard metric AC does. Comparing with the AC, the proposed metric effectively blocks the effect of indistinguishable nodes and retains stability under increasing indistinguishable nodes.
149 - Hao Peng , Jianxin Li , Qiran Gong 2019
Events are happening in real-world and real-time, which can be planned and organized occasions involving multiple people and objects. Social media platforms publish a lot of text messages containing public events with comprehensive topics. However, m ining social events is challenging due to the heterogeneous event elements in texts and explicit and implicit social network structures. In this paper, we design an event meta-schema to characterize the semantic relatedness of social events and build an event-based heterogeneous information network (HIN) integrating information from external knowledge base, and propose a novel Pair-wise Popularity Graph Convolutional Network (PP-GCN) based fine-grained social event categorization model. We propose a Knowledgeable meta-paths Instances based social Event Similarity (KIES) between events and build a weighted adjacent matrix as input to the PP-GCN model. Comprehensive experiments on real data collections are conducted to compare various social event detection and clustering tasks. Experimental results demonstrate that our proposed framework outperforms other alternative social event categorization techniques.
Twitter users operated by automated programs, also known as bots, have increased their appearance recently and induced undesirable social effects. While extensive research efforts have been devoted to the task of Twitter bot detection, previous metho ds leverage only a small fraction of user semantic and profile information, which leads to their failure in identifying bots that exploit multi-modal user information to disguise as genuine users. Apart from that, the state-of-the-art bot detectors fail to leverage user follow relationships and the graph structure it forms. As a result, these methods fall short of capturing new generations of Twitter bots that act in groups and seem genuine individually. To address these two challenges of Twitter bot detection, we propose BotRGCN, which is short for Bot detection with Relational Graph Convolutional Networks. BotRGCN addresses the challenge of community by constructing a heterogeneous graph from follow relationships and apply relational graph convolutional networks to the Twittersphere. Apart from that, BotRGCN makes use of multi-modal user semantic and property information to avoid feature engineering and augment its ability to capture bots with diversified disguise. Extensive experiments demonstrate that BotRGCN outperforms competitive baselines on a comprehensive benchmark TwiBot-20 which provides follow relationships. BotRGCN is also proved to effectively leverage three modals of user information, namely semantic, property and neighborhood information, to boost bot detection performance.
Graph models are widely used to analyse diffusion processes embedded in social contacts and to develop applications. A range of graph models are available to replicate the underlying social structures and dynamics realistically. However, most of the current graph models can only consider concurrent interactions among individuals in the co-located interaction networks. However, they do not account for indirect interactions that can transmit spreading items to individuals who visit the same locations at different times but within a certain time limit. The diffusion phenomena occurring through direct and indirect interactions is called same place different time (SPDT) diffusion. This paper introduces a model to synthesize co-located interaction graphs capturing both direct interactions, where individuals meet at a location, and indirect interactions, where individuals visit the same location at different times within a set timeframe. We analyze 60 million location updates made by 2 million users from a social networking application to characterize the graph properties, including the space-time correlations and its time evolving characteristics, such as bursty or ongoing behaviors. The generated synthetic graph reproduces diffusion dynamics of a realistic contact graph, and reduces the prediction error by up to 82% when compare to other contact graph models demonstrating its potential for forecasting epidemic spread.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا