ﻻ يوجد ملخص باللغة العربية
We report $ab$ $initio$ band diagram and optical absorption spectra of hexagonal boron nitride ($h$-BN), focusing on unravelling how the completeness of basis set for $GW$ calculations and how electron-phonon interactions (EPIs) impact on them. The completeness of basis set, an issue which was seldom discussed in previous optical spectra calculations of $h$-BN, is found crucial in providing converged quasiparticle band gaps. In the comparison among three different codes, we demonstrate that by including high-energy local orbitals in the all-electron linearized augmented plane waves based $GW$ calculations, the quasiparticle direct and fundamental indirect band gaps are widened by $sim$0.2 eV, giving values of 6.81 eV and 6.25 eV respectively at the $GW_0$ level. EPIs, on the other hand, reduce them to 6.62 eV and 6.03 eV respectively at 0 K, and 6.60 eV and 5.98 eV respectively at 300 K. With clamped crystal structure, the first peak of the absorption spectrum is at 6.07 eV, originating from the direct exciton contributed by electron transitions around $K$ in the Brillouin zone. After including the EPIs-renormalized quasiparticles in the Bethe-Salpeter equation, the exciton-phonon coupling shifts the first peak to 5.83 eV at 300 K, lower than the experimental value of $sim$6.00 eV. This accuracy is acceptable to an $ab$ $initio$ description of excited states with no fitting parameter.
Hexagonal Boron Nitride (hBN) mono and multilayers are promising hosts for room temperature single photon emitters (SPEs). In this work we explore high energy (~ MeV) electron irradiation as a means to generate stable SPEs in hBN. We investigate four
High pressure Raman experiments on Boron Nitride multi-walled nanotubes show that the intensity of the vibrational mode at ~ 1367 cm-1 vanishes at ~ 12 GPa and it does not recover under decompression. In comparison, the high pressure Raman experiment
Imaging and spectroscopy performed in a low-voltage scanning transmission electron microscope (LV-STEM) are used to characterize the structure and chemical properties of boron-terminated tetravacancies in hexagonal boron nitride (h-BN). We confirm ea
We present results for the optical absorption spectra of small-diameter single-wall carbon and boron nitride nanotubes obtained by {it ab initio} calculations in the framework of time-dependent density functional theory. We compare the results with t
Two-dimensional materials are characterised by a number of unique physical properties which can potentially make them useful to a wide diversity of applications. In particular, the large thermal conductivity of graphene and hexagonal boron nitride ha