ﻻ يوجد ملخص باللغة العربية
Kahan discretization is applicable to any system of ordinary differential equations on $mathbb R^n$ with a quadratic vector field, $dot{x}=f(x)=Q(x)+Bx+c$, and produces a birational map $xmapsto widetilde{x}$ according to the formula $(widetilde{x}-x)/epsilon=Q(x,widetilde{x})+B(x+widetilde{x})/2+c$, where $Q(x,widetilde{x})$ is the symmetric bilinear form corresponding to the quadratic form $Q(x)$. When applied to integrable systems, Kahan discretization preserves integrability much more frequently than one would expect a priori, however not always. We show that in some cases where the original recipe fails to preserve integrability, one can adjust coefficients of the Kahan discretization to ensure its integrability.
We find a novel one-parameter family of integrable quadratic Cremona maps of the plane preserving a pencil of curves of degree 6 and of genus 1. They turn out to serve as Kahan-type discretizations of a novel family of quadratic vector fields possess
Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field, this map is known to be integrable and to preserve a pe
Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field with a linear Poisson tensor and with a quadratic Hamilt
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t