ﻻ يوجد ملخص باللغة العربية
Inelastic ${}^{6}$Li scattering at 100 MeV/u on ${}^{12}$C and ${}^{93}$Nb have been measured with the high-resolution magnetic spectrometer Grand Raiden. The magnetic-rigidity settings of the spectrometer covered excitation energies from 10 to 40 MeV and scattering angles in the range $0^circ < theta_{text{lab.}}< 2^circ$. The isoscalar giant monopole resonance was selectively excited in the present data. Measurements free of instrumental background and the very favorable resonance-to-continuum ratio of ${}^{6}$Li scattering allowed for precise determination of the $E0$ strengths in ${}^{12}$C and ${}^{93}$Nb. It was found that the monopole strength in ${}^{12}$C exhausts $52 pm 3^text{(stat.)} pm 8 ^text{(sys.)}$% of the energy-weighted sum rule (EWSR), which is considerably higher than results from previous $alpha$-scattering experiments. The monopole strength in ${}^{93}$Nb exhausts $92 pm 4^text{(stat.)} pm 10 ^text{(sys.)}$% of the EWSR, and it is consistent with measurements of nuclei with mass number of $Aapprox90$. Such comparison indicates that the isoscalar giant monopole resonance distributions in these nuclei are very similar, and no influence due to nuclear structure was observed.
The isoscalar giant monopole, dipole, and quadrupole strength distributions have been deduced in $^{90, 92}$Zr, and $^{92}$Mo from background-free spectra of inelastic $alpha$-particle scattering at a beam energy of 385 MeV at extremely forward angle
Mid-heavy nuclei offer unique opportunities to study the collective and single-particle aspects of nuclear structure. This mass regime is a dynamic area where protons and neutrons generally occupy different orbitals, giving rise to complex structures
We searched for the bound state of the neutron-rich $Lambda$-hypernucleus ${}^{6}_{Lambda}$H, using the ${}^{6}$Li($pi^{-}, K^{+}$)X double charge-exchange reaction at a $pi^{-}$ beam momentum of 1.2 GeV/c at J-PARC. A total of $1.4 times 10^{12}$ $p
$^{6}$He+$t$ cluster states of exited $^{9}$Li have been measured by 32.7 MeV/nucleon $^{9}$Li beams bombarding on $^{208}$Pb target. Two resonant states are clearly observed with the excitation energies at 9.8 MeV and 12.6 MeV and spin-parity of 3/2
The semimicroscopic particle-hole dispersive optical model (PHDOM) is implemented to describe main properties of Isoscalar Giant Multipole Resonances (up to L=3) in medium-heavy closed-shell nuclei. The main properties are characterized by the streng