ترغب بنشر مسار تعليمي؟ اضغط هنا

High-accuracy inertial measurements with cold-atom sensors

83   0   0.0 ( 0 )
 نشر من قبل Remi Geiger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The research on cold-atom interferometers gathers a large community of about 50 groups worldwide both in the academic and now in the industrial sectors. The interest in this sub-field of quantum sensing and metrology lies in the large panel of possible applications of cold-atom sensors for measuring inertial and gravitational signals with a high level of stability and accuracy. This review presents the evolution of the field over the last 30 years and focuses on the acceleration of the research effort in the last 10 years. The article describes the physics principle of cold-atom gravito-inertial sensors as well as the main parts of hardware and the expertise required when starting the design of such sensors. It then reviews the progress in the development of instruments measuring gravitational and inertial signals, with a highlight on the limitations to the performances of the sensors, on their applications, and on the latest directions of research.



قيم البحث

اقرأ أيضاً

Inertial sensors based on cold atom interferometry exhibit many interesting features for applications related to inertial navigation, particularly in terms of sensitivity and long-term stability. However, at present the typical atom interferometer is still very much an experiment---consisting of a bulky, static apparatus with a limited dynamic range and high sensitivity to environmental effects. To be compliant with mobile applications further development is needed. In this work, we present a compact and mobile experiment, which we recently used to achieve the first inertial measurements with an atomic accelerometer onboard an aircraft. By integrating classical inertial sensors into our apparatus, we are able to operate the atomic sensor well beyond its standard operating range, corresponding to half of an interference fringe. We report atom-based acceleration measurements along both the horizontal and vertical axes of the aircraft with one-shot sensitivities of $2.3 times 10^{-4},g$ over a range of $sim 0.1,g$. The same technology can be used to develop cold-atom gyroscopes, which could surpass the best optical gyroscopes in terms of long-term sensitivity. Our apparatus was also designed to study multi-axis atom interferometry with the goal of realizing a full inertial measurement unit comprised of the three axes of acceleration and rotation. Finally, we present a compact and tunable laser system, which constitutes an essential part of any cold-atom-based sensor. The architecture of the laser is based on phase modulating a single fiber-optic laser diode, and can be tuned over a range of 1 GHz in less than 200 $mu$s.
Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological sensitivities. To realise this potential outside of a lab environment the size, weig ht and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique for the components that make up quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of $5 pm 0.5 times 10^{-10}$ mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
121 - D. Savoie , M. Altorio , B. Fang 2018
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where 3 atomic clouds are interrogated simultaneously in an atom interferometer featuring a 3.75 Hz sampling rate and an interrogation time of 801 ms. Interleaving improves the inertial sensitivity by efficiently averaging vibration noise, and allows us to perform dynamic rotation measurements in a so-far unexplored range. We demonstrate a stability of $3times 10^{-10}$ rad.s$^{-1}$, which competes with the best stability levels obtained with fiber-optics gyroscopes. Our work validates interleaving as a key concept for future atom-interferometry sensors probing time-varying signals, as in on-board navigation and gravity-gradiometry, searches for dark matter, or gravitational wave detection.
We report the operation of a cold-atom inertial sensor in a joint interrogation scheme, where we simultaneously prepare a cold-atom source and operate an atom interferometer in order to eliminate dead times. Noise aliasing and dead times are conseque nces of the sequential operation which is intrinsic to cold-atom atom interferometers. Both phenomena have deleterious effects on the performance of these sensors. We show that our continuous operation improves the short-term sensitivity of atom interferometers, by demonstrating a record rotation sensitivity of $100$ nrad.s$^{-1}/sqrt{rm Hz}$ in a cold-atom gyroscope of $11$ cm$^2$ Sagnac area. We also demonstrate a rotation stability of $1$ nrad.s$^{-1}$ after $10^4$ s of integration, improving previous results by an order of magnitude. We expect that the continuous operation will allow cold-atom inertial sensors with long interrogation time to reach their full sensitivity, determined by the quantum noise limit.
167 - Gael Varoquaux 2007
The accuracy and precision of current atom-interferometric inertialsensors rival state-of-the-art conventional devices using artifact-based test masses . Atomic sensors are well suited for fundamental measurements of gravito-inertial fields. The sens itivity required to test gravitational theories can be achieved by extending the baseline of the interferometer. The I.C.E. (Interferometrie Coherente pour lEspace) interferometer aims to achieve long interrogation times in compact apparatus via reduced gravity. We have tested a cold-atom source during airplane parabolic flights. We show that this environment is compatible with free-fall interferometric measurements using up to 4 second interrogation time. We present the next-generation apparatus using degenerate gases for low release-velocity atomic sources in space-borne experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا