ﻻ يوجد ملخص باللغة العربية
Cluster of viral pneumonia occurrences during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19. Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention, particularly when other chest imaging modalities are less available. Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images. The evolution of viruses and the emergence of novel mutated viruses further result in substantial dataset shift, which greatly limits the performance of classification approaches. In this paper, we formulate the task of differentiating viral pneumonia from non-viral pneumonia and healthy controls into an one-class classification-based anomaly detection problem, and thus propose the confidence-aware anomaly detection (CAAD) model, which consists of a shared feature extractor, an anomaly detection module, and a confidence prediction module. If the anomaly score produced by the anomaly detection module is large enough or the confidence score estimated by the confidence prediction module is small enough, we accept the input as an anomaly case (i.e., viral pneumonia). The major advantage of our approach over binary classification is that we avoid modeling individual viral pneumonia classes explicitly and treat all known viral pneumonia cases as anomalies to reinforce the one-class model. The proposed model outperforms binary classification models on the clinical X-VIRAL dataset that contains 5,977 viral pneumonia (no COVID-19) cases, 18,619 non-viral pneumonia cases, and 18,774 healthy controls.
Coronavirus disease 2019 (COVID-19) has emerged the need for computer-aided diagnosis with automatic, accurate, and fast algorithms. Recent studies have applied Machine Learning algorithms for COVID-19 diagnosis over chest X-ray (CXR) images. However
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia. The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease. Although the recent in
Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial or viral infection. It can be life-endangering if not acted upon in the right time and thus an early diagnosis of pneumonia is vital. The aim of this paper
Obtaining labels for medical (image) data requires scarce and expensive experts. Moreover, due to ambiguous symptoms, single images rarely suffice to correctly diagnose a medical condition. Instead, it often requires to take additional background inf
Osteoporosis is a common chronic metabolic bone disease that is often under-diagnosed and under-treated due to the limited access to bone mineral density (BMD) examinations, Dual-energy X-ray Absorptiometry (DXA). In this paper, we propose a method t