ترغب بنشر مسار تعليمي؟ اضغط هنا

Lightweight Photometric Stereo for Facial Details Recovery

114   0   0.0 ( 0 )
 نشر من قبل Juyong Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, 3D face reconstruction from a single image has achieved great success with the help of deep learning and shape prior knowledge, but they often fail to produce accurate geometry details. On the other hand, photometric stereo methods can recover reliable geometry details, but require dense inputs and need to solve a complex optimization problem. In this paper, we present a lightweight strategy that only requires sparse inputs or even a single image to recover high-fidelity face shapes with images captured under near-field lights. To this end, we construct a dataset containing 84 different subjects with 29 expressions under 3 different lights. Data augmentation is applied to enrich the data in terms of diversity in identity, lighting, expression, etc. With this constructed dataset, we propose a novel neural network specially designed for photometric stereo based 3D face reconstruction. Extensive experiments and comparisons demonstrate that our method can generate high-quality reconstruction results with one to three facial images captured under near-field lights. Our full framework is available at https://github.com/Juyong/FacePSNet.



قيم البحث

اقرأ أيضاً

We present a single-image 3D face synthesis technique that can handle challenging facial expressions while recovering fine geometric details. Our technique employs expression analysis for proxy face geometry generation and combines supervised and uns upervised learning for facial detail synthesis. On proxy generation, we conduct emotion prediction to determine a new expression-informed proxy. On detail synthesis, we present a Deep Facial Detail Net (DFDN) based on Conditional Generative Adversarial Net (CGAN) that employs both geometry and appearance loss functions. For geometry, we capture 366 high-quality 3D scans from 122 different subjects under 3 facial expressions. For appearance, we use additional 20K in-the-wild face images and apply image-based rendering to accommodate lighting variations. Comprehensive experiments demonstrate that our framework can produce high-quality 3D faces with realistic details under challenging facial expressions.
This paper addresses the problem of photometric stereo, in both calibrated and uncalibrated scenarios, for non-Lambertian surfaces based on deep learning. We first introduce a fully convolutional deep network for calibrated photometric stereo, which we call PS-FCN. Unlike traditional approaches that adopt simplified reflectance models to make the problem tractable, our method directly learns the mapping from reflectance observations to surface normal, and is able to handle surfaces with general and unknown isotropic reflectance. At test time, PS-FCN takes an arbitrary number of images and their associated light directions as input and predicts a surface normal map of the scene in a fast feed-forward pass. To deal with the uncalibrated scenario where light directions are unknown, we introduce a new convolutional network, named LCNet, to estimate light directions from input images. The estimated light directions and the input images are then fed to PS-FCN to determine the surface normals. Our method does not require a pre-defined set of light directions and can handle multiple images in an order-agnostic manner. Thorough evaluation of our approach on both synthetic and real datasets shows that it outperforms state-of-the-art methods in both calibrated and uncalibrated scenarios.
Photometric Stereo (PS) under outdoor illumination remains a challenging, ill-posed problem due to insufficient variability in illumination. Months-long capture sessions are typically used in this setup, with little success on shorter, single-day tim e intervals. In this paper, we investigate the solution of outdoor PS over a single day, under different weather conditions. First, we investigate the relationship between weather and surface reconstructability in order to understand when natural lighting allows existing PS algorithms to work. Our analysis reveals that partially cloudy days improve the conditioning of the outdoor PS problem while sunny days do not allow the unambiguous recovery of surface normals from photometric cues alone. We demonstrate that calibrated PS algorithms can thus be employed to reconstruct Lambertian surfaces accurately under partially cloudy days. Second, we solve the ambiguity arising in clear days by combining photometric cues with prior knowledge on material properties, local surface geometry and the natural variations in outdoor lighting through a CNN-based, weakly-calibrated PS technique. Given a sequence of outdoor images captured during a single sunny day, our method robustly estimates the scene surface normals with unprecedented quality for the considered scenario. Our approach does not require precise geolocation and significantly outperforms several state-of-the-art methods on images with real lighting, showing that our CNN can combine efficiently learned priors and photometric cues available during a single sunny day.
This paper proposes an uncalibrated photometric stereo method for non-Lambertian scenes based on deep learning. Unlike previous approaches that heavily rely on assumptions of specific reflectances and light source distributions, our method is able to determine both shape and light directions of a scene with unknown arbitrary reflectances observed under unknown varying light directions. To achieve this goal, we propose a two-stage deep learning architecture, called SDPS-Net, which can effectively take advantage of intermediate supervision, resulting in reduced learning difficulty compared to a single-stage model. Experiments on both synthetic and real datasets show that our proposed approach significantly outperforms previous uncalibrated photometric stereo methods.
This paper addresses the problem of photometric stereo for non-Lambertian surfaces. Existing approaches often adopt simplified reflectance models to make the problem more tractable, but this greatly hinders their applications on real-world objects. I n this paper, we propose a deep fully convolutional network, called PS-FCN, that takes an arbitrary number of images of a static object captured under different light directions with a fixed camera as input, and predicts a normal map of the object in a fast feed-forward pass. Unlike the recently proposed learning based method, PS-FCN does not require a pre-defined set of light directions during training and testing, and can handle multiple images and light directions in an order-agnostic manner. Although we train PS-FCN on synthetic data, it can generalize well on real datasets. We further show that PS-FCN can be easily extended to handle the problem of uncalibrated photometric stereo.Extensive experiments on public real datasets show that PS-FCN outperforms existing approaches in calibrated photometric stereo, and promising results are achieved in uncalibrated scenario, clearly demonstrating its effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا