ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Discriminability and Diversity: Batch Nuclear-norm Maximization under Label Insufficient Situations

59   0   0.0 ( 0 )
 نشر من قبل Shuhao Cui
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The learning of the deep networks largely relies on the data with human-annotated labels. In some label insufficient situations, the performance degrades on the decision boundary with high data density. A common solution is to directly minimize the Shannon Entropy, but the side effect caused by entropy minimization, i.e., reduction of the prediction diversity, is mostly ignored. To address this issue, we reinvestigate the structure of classification output matrix of a randomly selected data batch. We find by theoretical analysis that the prediction discriminability and diversity could be separately measured by the Frobenius-norm and rank of the batch output matrix. Besides, the nuclear-norm is an upperbound of the Frobenius-norm, and a convex approximation of the matrix rank. Accordingly, to improve both discriminability and diversity, we propose Batch Nuclear-norm Maximization (BNM) on the output matrix. BNM could boost the learning under typical label insufficient learning scenarios, such as semi-supervised learning, domain adaptation and open domain recognition. On these tasks, extensive experimental results show that BNM outperforms competitors and works well with existing well-known methods. The code is available at https://github.com/cuishuhao/BNM.



قيم البحث

اقرأ أيضاً

Due to the domain discrepancy in visual domain adaptation, the performance of source model degrades when bumping into the high data density near decision boundary in target domain. A common solution is to minimize the Shannon Entropy to push the deci sion boundary away from the high density area. However, entropy minimization also leads to severe reduction of prediction diversity, and unfortunately brings harm to the domain adaptation. In this paper, we investigate the prediction discriminability and diversity by studying the structure of the classification output matrix of a randomly selected data batch. We find by theoretical analysis that the prediction discriminability and diversity could be separately measured by the Frobenius-norm and rank of the batch output matrix. The nuclear-norm is an upperbound of the former, and a convex approximation of the latter. Accordingly, we propose Batch Nuclear-norm Maximization and Minimization, which performs nuclear-norm maximization on the target output matrix to enhance the target prediction ability, and nuclear-norm minimization on the source batch output matrix to increase applicability of the source domain knowledge. We further approximate the nuclear-norm by L_{1,2}-norm, and design multi-batch optimization for stable solution on large number of categories. The fast approximation method achieves O(n^2) computational complexity and better convergence property. Experiments show that our method could boost the adaptation accuracy and robustness under three typical domain adaptation scenarios. The code is available at https://github.com/cuishuhao/BNM.
There is growing interest in artificial intelligence to build socially intelligent robots. This requires machines to have the ability to read peoples emotions, motivations, and other factors that affect behavior. Towards this goal, we introduce a nov el dataset called MovieGraphs which provides detailed, graph-based annotations of social situations depicted in movie clips. Each graph consists of several types of nodes, to capture who is present in the clip, their emotional and physical attributes, their relationships (i.e., parent/child), and the interactions between them. Most interactions are associated with topics that provide additional details, and reasons that give motivations for actions. In addition, most interactions and many attributes are grounded in the video with time stamps. We provide a thorough analysis of our dataset, showing interesting common-sense correlations between different social aspects of scenes, as well as across scenes over time. We propose a method for querying videos and text with graphs, and show that: 1) our graphs contain rich and sufficient information to summarize and localize each scene; and 2) subgraphs allow us to describe situations at an abstract level and retrieve multiple semantically relevant situations. We also propose methods for interaction understanding via ordering, and reason understanding. MovieGraphs is the first benchmark to focus on inferred properties of human-centric situations, and opens up an exciting avenue towards socially-intelligent AI agents.
275 - Zhiyuan Zha , Xin Yuan , Bei Li 2017
Rank minimization methods have attracted considerable interest in various areas, such as computer vision and machine learning. The most representative work is nuclear norm minimization (NNM), which can recover the matrix rank exactly under some restr icted and theoretical guarantee conditions. However, for many real applications, NNM is not able to approximate the matrix rank accurately, since it often tends to over-shrink the rank components. To rectify the weakness of NNM, recent advances have shown that weighted nuclear norm minimization (WNNM) can achieve a better matrix rank approximation than NNM, which heuristically set the weight being inverse to the singular values. However, it still lacks a sound mathematical explanation on why WNNM is more feasible than NNM. In this paper, we propose a scheme to analyze WNNM and NNM from the perspective of the group sparse representation. Specifically, we design an adaptive dictionary to bridge the gap between the group sparse representation and the rank minimization models. Based on this scheme, we provide a mathematical derivation to explain why WNNM is more feasible than NNM. Moreover, due to the heuristical set of the weight, WNNM sometimes pops out error in the operation of SVD, and thus we present an adaptive weight setting scheme to avoid this error. We then employ the proposed scheme on two low-level vision tasks including image denoising and image inpainting. Experimental results demonstrate that WNNM is more feasible than NNM and the proposed scheme outperforms many current state-of-the-art methods.
Human-designed data augmentation strategies have been replaced by automatically learned augmentation policy in the past two years. Specifically, recent work has empirically shown that the superior performance of the automated data augmentation method s stems from increasing the diversity of augmented data cite{autoaug, randaug}. However, two factors regarding the diversity of augmented data are still missing: 1) the explicit definition (and thus measurement) of diversity and 2) the quantifiable relationship between diversity and its regularization effects. To bridge this gap, we propose a diversity measure called Variance Diversity and theoretically show that the regularization effect of data augmentation is promised by Variance Diversity. We validate in experiments that the relative gain from automated data augmentation in test accuracy is highly correlated to Variance Diversity. An unsupervised sampling-based framework, textbf{DivAug}, is designed to directly maximize Variance Diversity and hence strengthen the regularization effect. Without requiring a separate search process, the performance gain from DivAug is comparable with the state-of-the-art method with better efficiency. Moreover, under the semi-supervised setting, our framework can further improve the performance of semi-supervised learning algorithms compared to RandAugment, making it highly applicable to real-world problems, where labeled data is scarce. The code is available at texttt{url{https://github.com/warai-0toko/DivAug}}.
There is now extensive evidence demonstrating that deep neural networks are vulnerable to adversarial examples, motivating the development of defenses against adversarial attacks. However, existing adversarial defenses typically improve model robustn ess against individual specific perturbation types. Some recent methods improve model robustness against adversarial attacks in multiple $ell_p$ balls, but their performance against each perturbation type is still far from satisfactory. To better understand this phenomenon, we propose the emph{multi-domain} hypothesis, stating that different types of adversarial perturbations are drawn from different domains. Guided by the multi-domain hypothesis, we propose emph{Gated Batch Normalization (GBN)}, a novel building block for deep neural networks that improves robustness against multiple perturbation types. GBN consists of a gated sub-network and a multi-branch batch normalization (BN) layer, where the gated sub-network separates different perturbation types, and each BN branch is in charge of a single perturbation type and learns domain-specific statistics for input transformation. Then, features from different branches are aligned as domain-invariant representations for the subsequent layers. We perform extensive evaluations of our approach on MNIST, CIFAR-10, and Tiny-ImageNet, and demonstrate that GBN outperforms previous defense proposals against multiple perturbation types, i.e, $ell_1$, $ell_2$, and $ell_{infty}$ perturbations, by large margins of 10-20%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا