ﻻ يوجد ملخص باللغة العربية
We consider an open quantum system, with dissipation applied only to a part of its degrees of freedom, evolving via a quantum Markov dynamics. We demonstrate that, in the Zeno regime of large dissipation, the relaxation of the quantum system towards a pure quantum state is linked to the evolution of a classical Markov process towards a single absorbing state. The rates of the associated classical Markov process are determined by the original quantum dynamics. Extension of this correspondence to absorbing states with internal structure allows us to establish a general criterion for having a Zeno-limit nonequilibrium stationary state of arbitrary finite rank. An application of this criterion is illustrated in the case of an open XXZ spin-1/2 chain dissipatively coupled at its edges to baths with fixed and different polarizations. For this system, we find exact nonequilibrium steady-state solutions of ranks 1 and 2.
In this paper, we propose a new multi-armed bandit problem called the Gamblers Ruin Bandit Problem (GRBP). In the GRBP, the learner proceeds in a sequence of rounds, where each round is a Markov Decision Process (MDP) with two actions (arms): a conti
We propose the following definition of topological quantum phases valid for mixed states: two states are in the same phase if there exists a time independent, fast and local Lindbladian evolution driving one state into the other. The underlying idea,
We show that the time evolution of an open quantum system, described by a possibly time dependent Liouvillian, can be simulated by a unitary quantum circuit of a size scaling polynomially in the simulation time and the size of the system. An immediat
We investigate the steady state properties arising from the open system dynamics described by a memoryless (Markovian) quantum collision model, corresponding to a master equation in the ultra-strong coupling regime. By carefully assessing the work co
We investigate the time evolution of an open quantum system described by a Lindblad master equation with dissipation acting only on a part of the degrees of freedom ${cal H}_0$ of the system, and targeting a unique dark state in ${cal H}_0$. We show