ﻻ يوجد ملخص باللغة العربية
We investigate the effect of hypersonic (> 1 GHz) acoustic phonon wavepackets on electron transport in a semiconductor superlattice. Our quantum mechanical simulations demonstrate that a GHz train of picosecond deformation strain pulses propagating through a superlattice can generate current oscillations whose frequency is several times higher than that of the strain pulse train. The shape and polarity of the calculated current pulses agree well with experimentally measured electric signals. The calculations also explain and accurately reproduce the measured variation of the induced current pulse magnitude with the strain pulse amplitude and applied bias voltage. Our results open a route to developing acoustically-driven semiconductor superlattices as sources of millimetre and sub-millimetre electromagnetic waves.
The formation of exciton-polaritons allows the transport of energy over hundreds of nanometres at velocities up to 10^6 m s^-1 in organic semiconductors films in the absence of external cavity structures.
We present a novel optical transient absorption and reflection microscope based on a diffraction-limited pump pulse in combination with a wide-field probe pulse, for the spatio-temporal investigation of ultrafast population transport in thin films. T
Van der Waals moire materials have emerged as a highly controllable platform to study the electronic correlation phenomena. In particular, robust correlated insulating states have recently been discovered at both integer and fractional filling factor
Nonlinear charge transport in strongly coupled semiconductor superlattices is described by Wigner-Poisson kinetic equations involving one or two minibands. Electron-electron collisions are treated within the Hartree approximation whereas other inelas
In this letter, the transient behavior of a ferroelectric (FE) metal-oxide-semiconductor (MOS) capacitor is theoretically investigated with a series resistor. It is shown that compared to a conventional high-k dielectric MOS capacitor, a significant