ﻻ يوجد ملخص باللغة العربية
In real paramagnets, there is always a subtle many-body contribution to the systems energy, which can be regarded as a small effective local magnetic field $B_{loc}$. Usually, it is neglected, since it is very small when compared with thermal fluctuations and/or external magnetic fields $B$. Nevertheless, as both the temperature $T rightarrow$ 0K and $B rightarrow$ 0T, such many-body contributions become ubiquitous. Here, employing the magnetic Gruneisen parameter $Gamma_{mag}$ and entropy arguments, we report on the pivotal role played by the mutual interactions in the regime of ultra-low-$T$ and vanishing $B$. Our key results are: $i$) absence of a genuine zero-field quantum phase transition due to the presence of $B_{loc}$; $ii$) connection between the canonical definition of temperature and $Gamma_{mag}$; and $iii$) possibility of performing adiabatic magnetization by only manipulating the mutual interactions. Our findings unveil unprecedented aspects emerging from the mutual interactions.
Realization of semimetals with non-trivial topologies such as Dirac and Weyl semimetals, have provided a boost in the study of these quantum materials. Presence of electron correlation makes the system even more exotic due to enhanced scattering of c
Using ab initio band structure and model calculations we studied magnetic properties of one of the Mn$_4$ molecular magnets (Mn4(hmp)6), where two types of the Mn ions exist: Mn3+ and Mn2+. The direct calculation of the exchange constants in the GGA+
Disentangling the primary order parameter from secondary order parameters in phase transitions is critical to the interpretation of the transition mechanisms in strongly correlated systems and quantum materials. Here we present a study of structural
We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are obse
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are su