ﻻ يوجد ملخص باللغة العربية
Skyrmions in non-centrosymmetric magnets are vortex-like spin arrangements, viewed as potential candidates for information storage devices. The crystal structure and non-collinear magnetic structure together with magnetic and spin-orbit interactions define the symmetry of the Skyrmion structure. We outline the importance of these parameters in the Heusler compound Mn1.4PtSn which hosts antiskyrmions, a vortex-like spin texture related to skyrmions.1 We overcome the challenge of growing large micro-twin-free single crystals of Mn1.4PtSn which has proved to be the bottleneck for realizing bulk skyrmionic/antiskyrmionic states in a compound. The use of 5d-transition metal, platinum, together with manganese as constituents in the Heusler compound such as Mn1.4PtSn is a precondition for the non-collinear magnetic structure. Due to the tetragonal inverse Heusler structure, Mn1.4PtSn exhibits large magneto-crystalline anisotropy and D2d symmetry, which are necessary for antiskyrmions. The superstructure in Mn1.4PtSn is induced by Mn-vacancies which enables a ferromagnetic exchange interaction to occur. Mn1.4PtSn, the first known tetragonal Heusler superstructure compound, opens up a new research direction for properties related to the superstructure in a family containing thousands of compounds.
Synthesizing half-metallic fully-compensated ferrimagnets that form in the inverse Heusler phase could lead to superior spintronic devices. These materials would have high spin polarization at room temperature with very little fringing magnetic field
In recent years, antiferromagnetic spintronics has received much attention since ideal antiferromagnets do not produce stray fields and are much more stable to external magnetic fields compared to materials with net magnetization. Akin to antiferroma
Electronic correlations are crucial to the low energy physics of metallic systems with localized $d$ and $f$ states; however, their effect on band insulators and semiconductors is typically negligible. Here, we measure the electronic structure of the
In this work we have investigated the orthorhombic to tetragonal phase transition in the Ba2Cu3O4Cl2 compound. This transition was observed by X-ray powder diffractometry carried out in samples heat treated between 700 and 750OC and also in samples w
The electronic and transport properties of the half-Heusler compound LaPtSb are investigated by performing first-principles calculations combined with semi-classical Boltzmann theory and deformation potential theory. Compared with many typical half-H