Let $H$ be a fixed graph. Given a graph $G$ and an integer $k$, the $H$-free edge modification problem asks whether it is possible to modify at most $k$ edges in $G$ to make it $H$-free. Sandeep and Sivadasan (IPEC 2015) asks whether the paw-free completion problem and the paw-free edge deletion problem admit polynomial kernels. We answer both questions affirmatively by presenting, respectively, $O(k)$-vertex and $O(k^4)$-vertex kernels for them. This is part of an ongoing program that aims at understanding compressibility of $H$-free edge modification problems.