ﻻ يوجد ملخص باللغة العربية
One of the challenging problems in the condensed matter physics is to understand the quantum many-body systems, especially, their physical mechanisms behind. Since there are only a few complete analytical solutions of these systems, several numerical simulation methods have been proposed in recent years. Amongst all of them, the Tensor Network algorithms have become increasingly popular in recent years, especially for their adaptability to simulate strongly correlated systems. The current work focuses on the generalization of such Tensor-Network-based algorithms, which are sufficiently robust to describe critical phenomena and phase transitions of multistate spin Hamiltonians in the thermodynamic limit. We have chosen two algorithms: the Corner Transfer Matrix Renormalization Group and the Higher-Order Tensor Renormalization Group. This work, based on tensor-network analysis, opens doors for the understanding of phase transition and entanglement of the interacting systems on the non-Euclidean geometries. We focus on three main topics: A new thermodynamic model of social influence, free energy is analyzed to classify the phase transitions on an infinite set of the negatively curved geometries where a relation between the free energy and the Gaussian radius of the curvature is conjectured, a unique tensor-based algorithm is proposed to study the phase transition on fractal structures.
The transverse-field Ising model on the Sierpinski fractal, which is characterized by the fractal dimension $log_2^{~} 3 approx 1.585$, is studied by a tensor-network method, the Higher-Order Tensor Renormalization Group. We analyze the ground-state
Phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of fo
In this paper we study the critical behavior of an $N$-component ${phi}^{4}$-model in hyperbolic space, which serves as a model of uniform frustration. We find that this model exhibits a second-order phase transition with an unusual magnetization tex
We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized pe
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied by a tensor product variational formulation that we have generalized for this purpose. First, we identify the quantum phase transition for each hyperb