ترغب بنشر مسار تعليمي؟ اضغط هنا

Tensor Networks: Phase transition phenomena on hyperbolic and fractal geometries

75   0   0.0 ( 0 )
 نشر من قبل Andrej Gendiar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the challenging problems in the condensed matter physics is to understand the quantum many-body systems, especially, their physical mechanisms behind. Since there are only a few complete analytical solutions of these systems, several numerical simulation methods have been proposed in recent years. Amongst all of them, the Tensor Network algorithms have become increasingly popular in recent years, especially for their adaptability to simulate strongly correlated systems. The current work focuses on the generalization of such Tensor-Network-based algorithms, which are sufficiently robust to describe critical phenomena and phase transitions of multistate spin Hamiltonians in the thermodynamic limit. We have chosen two algorithms: the Corner Transfer Matrix Renormalization Group and the Higher-Order Tensor Renormalization Group. This work, based on tensor-network analysis, opens doors for the understanding of phase transition and entanglement of the interacting systems on the non-Euclidean geometries. We focus on three main topics: A new thermodynamic model of social influence, free energy is analyzed to classify the phase transitions on an infinite set of the negatively curved geometries where a relation between the free energy and the Gaussian radius of the curvature is conjectured, a unique tensor-based algorithm is proposed to study the phase transition on fractal structures.



قيم البحث

اقرأ أيضاً

The transverse-field Ising model on the Sierpinski fractal, which is characterized by the fractal dimension $log_2^{~} 3 approx 1.585$, is studied by a tensor-network method, the Higher-Order Tensor Renormalization Group. We analyze the ground-state energy and the spontaneous magnetization in the thermodynamic limit. The system exhibits the second-order phase transition at the critical transverse field $h_{rm c}^{~} = 1.865$. The critical exponents $beta approx 0.198$ and $delta approx 8.7$ are obtained. Complementary to the tensor-network method, we make use of the real-space renormalization group and improved mean-field approximations for comparison.
117 - Jozef Genzor , Andrej Gendiar , 2015
Phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of fo ur. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from that of the square-lattice Ising model. An exponential decay is observed in the density matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.
In this paper we study the critical behavior of an $N$-component ${phi}^{4}$-model in hyperbolic space, which serves as a model of uniform frustration. We find that this model exhibits a second-order phase transition with an unusual magnetization tex ture that results from the lack of global parallelism in hyperbolic space. Angular defects occur on length scales comparable to the radius of curvature. This phase transition is governed by a new strong curvature fixed point that obeys scaling below the upper critical dimension $d_{uc}=4$. The exponents of this fixed point are given by the leading order terms of the $1/N$ expansion. In distinction to flat space no order $1/N$ corrections occur. We conclude that the description of many-particle systems in hyperbolic space is a promising avenue to investigate uniform frustration and non-trivial critical behavior within one theoretical approach.
We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized pe r lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the Corner Transfer Matrix Renormalization Group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.
113 - Andrej Gendiar 2020
Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied by a tensor product variational formulation that we have generalized for this purpose. First, we identify the quantum phase transition for each hyperb olic lattice by calculating the magnetization. We study the entanglement entropy at the phase transition in order to analyze the correlations of various subsystems located at the center with the rest of the lattice. We confirm that the entanglement entropy satisfies the area law at the phase transition for fixed coordination number, i.e., it scales linearly with the increasing size of the subsystems. On the other hand, the entanglement entropy decreases as power-law with respect to the increasing coordination number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا