ﻻ يوجد ملخص باللغة العربية
The outer solar system has a diverse range of objects, holding important clues about the formation and evolution of our solar system, the emergence and current distribution of life, and the physical processes controlling both our own and exoplanetary systems. This White Paper summarizes the Outer Planets Analysis Groups (OPAGs) priorities in the Decadal Survey. Taking into account the science to be achieved, the timing of solar system events, technological readiness, and programmatic factors, our mission recommendations are as follows. OPAG strongly endorses the completion and launch of the Europa Clipper mission, maintaining the science capabilities identified upon its selection, and a Juno extended mission at Jupiter. For the decade 2023-2032, OPAG endorses a new start for two directed missions: first, a mission to Neptune or Uranus with atmospheric probe(s), and second, a life detection Ocean World mission, along with additional technological development for life detection. A Neptune mission is preferred because, while the Neptune and Uranus systems provide equally compelling opportunities, Triton is a higher priority ocean world target than the Uranian satellites. The mission to Neptune or Uranus should fly first because a delay threatens key science objectives, and additional technological development is required for a directed life detection mission. Along with missions, we emphasize the necessity of maintaining a healthy Research and Analysis (R&A) program as well as a robust Earth-based observing program. OPAGs top two technology priorities are rapid development of a next-generation radioisotope power source for a mission to Neptune or Uranus, and development of key life detection technologies in support of an Ocean World mission. Finally, fostering an interdisciplinary, diverse, equitable, inclusive, and accessible community is of top importance to the OPAG community.
In this white paper, we present a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan exosphere to the deep interior, and we detail which instrumentation and mission scenarios should be u
As an end-member of terrestrial planet formation, Mercury holds unique clues about the original distribution of elements in the earliest stages of solar system development and how planets and exoplanets form and evolve in close proximity to their hos
The four directly imaged planets orbiting the star HR 8799 are an ideal laboratory to probe atmospheric physics and formation models. We present more than a decades worth of Keck/OSIRIS observations of these planets, which represent the most detailed
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield
Taipan is a multi-object spectroscopic galaxy survey starting in 2017 that will cover 2pi steradians over the southern sky, and obtain optical spectra for about two million galaxies out to z<0.4. Taipan will use the newly-refurbished 1.2m UK Schmidt